

You Choose, We Do It St. JOSEPH'S COLLEGE OF ENGINEERING (An Autonomous Institution) St. Joseph's Group of Institutions Jeppiaar Educational Trust OMR, Chennai - 119.

FACULTY OF ELECTRICAL ENGINEERING

REGULATION - 2021

B.E. - ELECTRONICS AND INSTRUMENTATION ENGINEERING

Choice Based Credit System (CBCS)

I - VIII Semesters

CURRICULUM AND SYLLABUS

Vision of the department

To make every student of the Department irrespective of his/her social, cultural background and learning abilities gets a fair chance in mastering the various fields of Electronics and Instrumentation Engineering to become a proficient individual for the empowerment of society

Mission of the department

The Department strives:

- Professional: To prepare students to understand recent technologies in Electronics and Instrumentation Engineering effectively and adapt themselves in an ever-changing environment.
- Technical Proficiency: To impart excellent computing knowledge to students by providing well equipped facilities and state of the art systems.
- Social Competency: To prepare students with excellent leadership skills, management capabilities and ethical understanding for successful career.

Program Education Objectives (PEOs)

- PEO 1 To prepare the students have successful career in industry and motivate for higher education.
- PEO 2 To provide strong foundation in basic science and mathematics necessary to formulate, solve and analyse Electronics and Instrumentation problems.
- PEO 3 To provide strong foundation in circuit theory, control theory and signal processing concepts and to provide good knowledge of Instrumentation systems and their applications.
- PEO 4 To provide knowledge on basic electronics and their applications in Instrumentation engineering and provide an opportunity to work in interdisciplinary groups.
- PEO 5 To promote student awareness for lifelong learning and inculcate professional ethics by providing necessary foundation on computational platforms and software applications related to the respective field of Engineering.

Program Specific Outcomes (PSOs)

Our Graduate will be able to:

PSO1:Relate the rudiments of mathematics, science and engineering knowledge to classify, formulate, plan and explore compound engineering problems of electric circuits, analog and digital electronic circuits, process control and instrumentation field along with computational skills.

PSO2: Relate and apply suitable techniques for designing engineering hardware and software tools to assist in design, implement & evaluate the control, measurement, process and instrumentation systems to engross for a life- long learning and thereby work effectually as an distinct individual and also in a multidisciplinary team.

PSO3: Comprehend the influence of Professional performance and ethics, communicate commendably with Electronics and Instrumentation Engineering community and establish a better environment for the society with continual growth.

Program Outcomes (POs):

- a) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **b) Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- d) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **f)** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **g)** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- **h) Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **j) Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- I) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME				I	PROG	RAM		ITCON	MES			
EDUCATIONAL OBJECTIVES	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
I	~	~	~	✓	~	~		~	~		\checkmark	
II						~	~	✓	~	✓	✓	
III	~	~	~	~	~					✓	✓	✓
IV	~	~	~	✓					✓	✓	\checkmark	
V	~		~			~	~	~		\checkmark	\checkmark	

PEO / PO Mapping

PO / UNDER GRADUATE SUBJECTS MAPPING

SEMES	NAME OF THE SUBJECT				PR	OGR	AM (ουτα	COM	ES			
TER	NAME OF THE SUBJECT	а	b	С	d	е	f	g	h	i	j	k	Ι
	THEORY												
	Communicative English									\checkmark	\checkmark		\checkmark
	Engineering Mathematics- I	\checkmark	\checkmark			\checkmark							\checkmark
	Engineering Physics	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					\checkmark
	Engineering Chemistry	\checkmark	\checkmark	\checkmark		\checkmark							\checkmark
SEM	Engineering Graphics			\checkmark	\checkmark								
I	Problem solving and Python	✓	\checkmark	\checkmark	√	1							
	Programming		-										
	PRACTICALS		_		_		-	-	-				
	Python Programming Laboratory	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark
	Physics and Chemistry	✓	√										
	Laboratory												
	THEORY					1				T		1	
SEM II	Professional English									\checkmark	\checkmark		\checkmark
	Engineering Mathematics – II	✓	\checkmark	\checkmark		✓							\checkmark
	Physics for Electronics	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					\checkmark

SEMES					PR	OGR	AM C	υτο	COM	ES			
TER	NAME OF THE SUBJECT	а	b	С	d	е	f	g	h	i	j	k	I
	Engineering												
	Environmental Science and	\checkmark	\checkmark			\checkmark	~	\checkmark	✓				~
	Engineering	v	v			•	v	v	v				v
	Basic Civil and Mechanical				√		~						
	Engineering												
	Principles of Electrical, Electronics	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							~
	and Communication Engineering PRACTICALS												
	Engineering Practices Laboratory	✓		\checkmark	\checkmark	\checkmark	\checkmark				✓		
	Principles of Electrical and Electronic												
	devices Laboratory	~	~	~	\checkmark	~							~
	THEORY						1						
	Transform and Partial Differential	~	\checkmark			\checkmark							~
	Equations	v	v			v							v
	Electrical and Electronic	~	\checkmark	\checkmark	✓	√					✓		v
	Measurements		, .										
	Transducer Engineering	✓	✓	 ✓ 	 ✓ 	✓							~
	Electric Circuit Analysis	✓	✓	✓	✓	✓							~
SEM III	Analog Electronics	✓	✓	✓	✓	✓							~
	Digital Logic Circuits				\checkmark	\checkmark							
	PRACTICALS		T										
	Electrical and Electronics	~	\checkmark	\checkmark	✓	~							~
E r /	measurement Laboratory		-										
	Analog and Digital Electronics Laboratory	✓			\checkmark	\checkmark						\checkmark	~
	Technical Seminar		+							 ✓ 	√	\checkmark	
	THEORY			l			l				· ·		
	Statistics & Numerical Methods	✓	\checkmark	✓									v
	Industrial Instrumentation-I	· •	· √	· √	 ✓ 	 ✓ 					✓		-
	Electrical Machines	• •	• •	•	• •	· ✓		✓			•		~
		▼ ✓	▼ ✓	▼ √	▼ ✓	• √		•					v
	Control Systems Fundamentals of Data Structures in	•	•	•	×								•
SEM IV	C (Lab Integrated)			\checkmark	\checkmark	\checkmark							~
•=	Communication Engineering			✓	\checkmark	\checkmark							~
	PRACTICALS					1							
	Machines and Control Laboratory	√			\checkmark	\checkmark						\checkmark	v
	Measurements and Transducers	-											
	Laboratory			~	\checkmark	\checkmark	~			\checkmark	~		
	Professional Skills Lab									✓	✓	\checkmark	
	THEORY			1			1						
	Power Electronics	✓	\checkmark	✓	✓	\checkmark		✓					V
	Microprocessors and												
	Microcontrollers	✓	\checkmark	\checkmark	~	\checkmark		✓					
SEM V	Biomedical Instrumentation	✓	1	✓		✓			✓	✓		✓	v
	Industrial Instrumentation-II	✓	\checkmark	✓	✓	✓		✓					v
	Open Elective-I	✓	1	✓	✓	1	1	1			✓	✓	~
	Professional Elective- I		1	1	1	1	1	1	1	1	1	1	

SEMES					PR	OGR	AM (DUT	СОМ	ES			
TER	NAME OF THE SUBJECT	а	b	С	d	е	f	g	h	i	j	k	I
	Audit course												
	PRACTICALS		•				•		•			·	-
	Microprocessors and Microcontrollers Laboratory	√		~	~						~	~	~
	Industrial Instrumentation Laboratory	\checkmark		✓	\checkmark						\checkmark	✓	√
	THEORY				1								
	Industrial Internet of Things	\checkmark	\checkmark	\checkmark	✓	\checkmark		✓				Ι	✓
	Process Control	\checkmark	\checkmark	✓	✓	\checkmark		✓					✓
	Digital Signal Processing	\checkmark	\checkmark	✓	✓	\checkmark		✓					✓
0514.)//	Embedded Systems (Integrated Lab)	✓		✓		~			~	~		✓	~
SEM VI	Object Oriented Programming Systems (Integrated Lab)			~	~	~							~
	Professional Elective II												
	PRACTICALS		•				•		•			·	-
	Instrumentation System Design Lab	\checkmark		\checkmark	\checkmark						\checkmark	✓	✓
	Process Control Laboratory	\checkmark		✓	\checkmark						\checkmark	✓	✓
	THEORY												
	Computer Control of Processes	\checkmark	\checkmark	\checkmark	✓	\checkmark		✓					
	Applied Soft Computing	✓	~	~	~	~		~					~
	Industrial Data Network	\checkmark		✓		\checkmark	\checkmark					✓	✓
SEM	Professional Elective- III	\checkmark	\checkmark	✓	✓	\checkmark		✓					✓
VII	Professional Elective- IV												
	Open Elective – II												
	PRACTICALS		•				•		•			·	
	Industrial Automation Laboratory	\checkmark		\checkmark	\checkmark						\checkmark	✓	✓
	Project Work- Phase I	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓	~
	THEORY		•									-	
	Professional Elective- V												Ι
SEM	Professional Elective- VI								1			1	\uparrow
VIII	PRACTICALS		1	1	1	1	1	1	1	1	1		
	Project Phase II	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	v

PROFESSIONAL ELECTIVES

					PR	OGR	AM	OUT	CON	IES			
SEMESTER	NAME OF THE SUBJECT	а	b	С	d	е	f	g	h	i	j	k	Ι
	Computer Networks	✓		\checkmark	✓	✓		\checkmark					
	MEMS and NEMS	✓		\checkmark	\checkmark	\checkmark		\checkmark					
	Electric and Hybrid Vehicles	✓	\checkmark		\checkmark	\checkmark							
ELECTIVE I	Analytical Instrumentation												
	Modern Control Theory								\checkmark		\checkmark		\checkmark
	Instrumentation Standards			\checkmark	\checkmark	\checkmark	\checkmark						
	Process Data Analytics	\checkmark		✓	\checkmark	✓			\checkmark				
	System Identification and	~		\checkmark	\checkmark	\checkmark			\checkmark				√
	Adaptive Control			-									Ĺ
	Advanced Instrumentation	✓		\checkmark	\checkmark	\checkmark			\checkmark				✓
ELECTIVE II	Systems												
	Microcontroller Based System				\checkmark	\checkmark							
	Design												
	Digital Image Processing	✓		✓	✓	✓			✓				✓
	Fibre Optics and Laser	✓		\checkmark		\checkmark							
	Instrumentation	√	\checkmark	✓	✓	✓		 ✓ 					√
	Optimal Control	v	v	v	•	v		v					•
	Logic and Distributed Control		\checkmark		\checkmark	\checkmark							
ELECTIVE	System	✓		✓		✓							-
	Advanced Topics in PID Control Model Predictive Control	▼ √		▼ ✓		v √							-
	Fault Detection and	•		•		•							
	Diagnosis	✓	\checkmark	\checkmark			\checkmark	\checkmark					
	Safety Instrumented System		\checkmark	\checkmark					√	√			
	Advanced Digital		-							•			
	Signal Processing	✓	\checkmark	✓	\checkmark	\checkmark		\checkmark					\checkmark
	Radar and Navigational Aids	√	\checkmark	√		\checkmark					\checkmark		√
ELECTIVE	CMOS VLSI Design	-	-			-					-		-
IV	Thermal Power Plant												+
	Instrumentation												
	Mechatronics System Design	✓		✓		✓							1
	Advanced Process Control	✓	\checkmark		✓			✓				\checkmark	\checkmark
	Intellectual Property Rights		\checkmark			✓	✓	✓	✓	✓	✓		
	Professional Ethics		,							,			
	in Engineering	\checkmark	\checkmark	\checkmark					\checkmark	~			✓
	Principles of Management	✓	\checkmark	✓					✓	✓			✓
ELECTIVE V		✓	\checkmark	✓					✓	✓			✓
	Principles of Operations					\checkmark	\checkmark			\checkmark			
	Research									v			
	Human Rights	✓	\checkmark	✓					\checkmark	\checkmark			\checkmark
	Fundamentals of Nano Science	✓	✓	\checkmark					\checkmark	✓			✓
	Non-Linear Control Systems	✓	\checkmark	✓					✓	\checkmark			\checkmark
	Unit Operation and Control	✓		\checkmark	\checkmark	\checkmark	\checkmark						
ELECTIVE	Cyber Security for Industrial	~	~	✓					~	✓			~
VI	Automation												Ľ
	Robotics and Automation	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark			\checkmark
	Instrumentation in	~	1	✓	1	✓							
	Petrochemical Industries		1		1								

B.E. ELECTRONICS AND INSTRUMENTATION ENGINEERING REGULATIONS – 2021 CHOICE BASED CREDIT SYSTEM I TO VIII SEMESTERS CURRICULA & SYLLABI

SEMESTER I

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
		ТН	EORY					
1.	HS1101	Communicative English	HSC	3	3	0	0	3
2.	MA1102	Engineering Mathematics I	BSC	4	4	0	0	4
3.	PH1103	Engineering Physics	BSC	3	3	0	0	3
4.	CY1104	Engineering Chemistry	BSC	3	3	0	0	3
5.	GE1105	Problem solving and Python Programming	ESC	3	3	0	0	3
6.	GE1106	Engineering Graphics	ESC	6	2	0	4	4
		PRAG	CTICALS					
7.	GE1107	Python Programming Laboratory	ESC	4	0	0	4	2
8.	BS1108	Physics and Chemistry Laboratory	BSC	4	0	0	4	2
		TOTAL		30	18	0	12	24
	In	duction Training	MAC		2 We	eks		

SEMESTER II

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
		TH	EORY					
1.	HS1201	Professional English	HSC	3	3	0	0	3
2.	MA1202	Engineering Mathematics – II	BSC	4	4	0	0	4
3.	PH1253	Physics for Electronics Engineering	BSC	3	3	0	0	3
4.	GE1204	Environmental Science and Engineering	HSC	3	3	0	0	3
5.	GE1205	Basic Civil and Mechanical Engineering	ESC	3	3	0	0	3
6.	EE1271	Principles of Electrical, Electronics and Communication Engineering	PCC	3	3	0	0	3
		PRAG	CTICALS					
7.	GE1207	Engineering Practices Laboratory	ESC	4	0	0	4	2
8.	EE1278	Principles of Electrical and Electronic devices Laboratory	PCC	4	0	0	4	2
		TOTAL		27	19	0	8	23
P	ersonality a	& Character Development	MAC		1 W	eek		

SEMESTER III

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
		THE	ORY					
1.	MA1301	Transform and Partial Differential Equations	BSC	4	4	0	0	4
2.	EI1301	Electrical and Electronic Measurements	PCC	4	3	0	0	3
3.	EI1302	Transducer Engineering	PCC	4	3	0	0	3
4.	EE1371	Electric Circuit Analysis	PCC	3	2	1	0	3
5.	EE1372	Analog Electronics	PCC	3	3	0	0	3
6.	EE1373	Digital Logic Circuits	PCC	3	2	1	0	3
		PRAC	TICALS					
7.	EE1391	Analog and Digital Electronics Laboratory	PCC	4	0	0	4	2
8.	EI1308	Electrical and Electronics Measurement Laboratory	PCC	4	0	0	4	2
		TOTAL		29	17	2	8	23
(Career Competency Development I- BEC Training				1 W	eek		

SEMESTER IV

S. NO.	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
		THE	EORY					
1.	MA1401	Statistics & Numerical Methods	BSC	4	3	1	0	4
2.	EI1401	Industrial Instrumentation-I	PCC	4	З	0	0	3
3.	EE1451	Electrical Machines	PCC	3	3	0	0	3
4.	EI1402	Communication Engineering	ESC	3	3	0	0	3
5.	EE1471	Control Systems	PCC	3	2	1	0	3
6.	CS1406	Fundamentals of Data Structures in C (Integrated Lab)	ESC	5	3	0	2	4
		PRAC	TICALS					
7.	EI1408	Machines and Control Laboratory	ESC	4	0	0	4	2
8.	EI1409	Measurements and Transducers Laboratory	PCC	4	0	0	4	2
9.	HS1310	Professional Skills Lab	HSC	2	0	0	2	1
		TOTAL		34	18	2	12	25

SEMESTER V

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
		TH	EORY					
1.	EE1571	Power Electronics	PCC	3	3	0	0	3

2.	EE1572	Microprocessors and Microcontrollers	PCC	3	3	0	0	3
3.	EI1501	Biomedical Instrumentation	PCC	3	3	0	0	3
4.	EI1502	Industrial Instrumentation-II	PCC	3	3	0	0	3
5.		Open Elective-I	OEC	3	3	0	0	3
6.		Professional Elective- I	PEC	3	3	0	0	3
7.		Audit course *(one from the list of audit courses)	AC	2	2	0	0	0
		PRAC	TICALS					
8.	EE1591	Microprocessors and Microcontrollers Laboratory	PCC	4	0	0	4	2
9.	EI1507	Industrial Instrumentation Laboratory	PCC	4	0	0	4	2
		TOTAL		28	20	0	8	22
C	Career Com	petency Development II-(Apt Technical Training)	tude and		1 W	eek		
		Value Added Course (EEC)		1 W	eek 2	2 Crec	lits	

SEMESTER VI

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
		ТН	EORY					
1.	EI1601	Industrial Internet of Things	PCC	3	3	0	0	3
2.	EI1602	Process Control	PCC	4	3	0	0	3
3.	EE1671	Digital Signal Processing	PCC	3	2	1	0	3
4.	EE1672	Embedded Systems (Integrated Lab)	ESC	5	3	0	2	4
5.	DS1302	Object Oriented Programming (Integrated Lab)	ESC	5	3	0	2	4
6.	EI1603	Professional Elective II	PCC	3	3	0	0	3
		PRAG	CTICALS					
7.	EI1608	Instrumentation System Design Lab	PCC	4	0	0	4	2
8.	EI1609	Process Control Laboratory	PCC	4	0	0	4	2
		TOTAL		29	17	1	12	24
		eer Competency Development (Aptitude & Technical Training)		4 Weeks				
		Internship -I		2 weeks - 1	credi	t		

SEMESTER VII

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
	THEORY							
1.	EI1701	Computer Control of Processes	PCC	3	3	0	0	3
2.	EI1702	Applied Soft Computing	PCC	3	3	0	0	3
3.	EI1703	Industrial Data Network	PCC	3	3	0	0	3
4.		Professional Elective- III	PEC	3	3	0	0	3
5.		Professional Elective- IV	PEC	3	3	0	0	3

6.		Open Elective – II	OEC	3	3	0	0	3
		PRAC	TICALS					
7.	EI1708	PCC	4	0	0	4	2	
8.	EI1709	EEC	4	0	0	4	2	
		TOTAL		26	18	0	8	22
	Career Competency Development V (Company specific Training)				1 W	eek		

SEMESTER VIII

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С	
	THEORY								
1.		Professional Elective- V	PEC	3	3	0	0	3	
2.		Professional Elective- VI	PEC	3	3	0	0	3	
		PRAC	TICALS						
3.	EI1801	Project Phase II	EEC	20	0	0	20	10	
	TOTAL			26	6	0	20	16	

TOTAL CREDITS= 179

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с
1.	CS1404	Computer Networks	PE	3	3	0	0	3
2.	EC1008	MEMS and NEMS	PE	3	3	0	0	3
3.	EE1552	Electric and Hybrid Vehicles	PE	3	3	0	0	3
4.	EI1511	Analytical Instrumentation	PE	3	3	0	0	3
5.	EI1512	Modern Control Theory	PE	3	3	0	0	3
6.	EI1513	Instrumentation Standards	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE - I (V SEMESTER)

PROFESSIONAL ELECTIVE – II (VI SEMESTER)

S. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1.	EI1621	Process Data Analytics	PE	3	3	0	0	3
2.	EE1731	System Identification and Adaptive Control	PE	3	3	0	0	3
3.	EI1622	Advanced Instrumentation Systems	PE	3	3	0	0	3
4.	EE1853	Microcontroller Based System Design	PE	3	3	0	0	3
5.	EI1623	Digital Image Processing	PE	3	3	0	0	3
6.	EI1624	Fibre Optics and Laser Instrumentation	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE – III (VII SEMESTER)

S. NO.	COURS ECOD E	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	EI1731	Optimal Control	PE	3	3	0	0	3
2.	EI1732	Logic and Distributed Control System	PE	3	3	0	0	3
3.	EI1733	Advanced Topics in PID Control	PE	3	3	0	0	3
4.	EI1734	Model Predictive Control	PE	3	3	0	0	3
5.	EI1735	Fault Detection and Diagnosis	PE	3	3	0	0	3
6.	EI1736	Safety Instrumental System	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE – IV (VII SEMESTER)

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1.	EC1007	Advanced Digital Signal Processing	PE	3	3	0	0	3
2.	EC1702	Radar and Navigational Aids	PE	3	3	0	0	3
3.	EC1731	CMOS VLSI Design	PE	3	3	0	0	3
4.	EI1741	Thermal Power Plant Instrumentation	PE	3	3	0	0	3
5.	EI1742	Mechatronics System Design	PE	3	3	0	0	3
6.	EI1743	Advanced Process Control	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE – V (VIII SEMESTER)

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1.	GE1001	Intellectual Property Rights	PE	3	3	0	0	3
2.	GE1003	Professional Ethics in Engineering	PE	3	3	0	0	3
3.	MG1001	Principles of Management	PE	3	3	0	0	3
4.	CE1025	Disaster Management	PE	3	3	0	0	3
5.	MG1002	Operational Research	PE	3	3	0	0	3
6.	GE1002	Human Rights	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE – VI (VIIISEMESTER)

S.NO	COURSE		CATEGORY	CONTACT				
3.110	CODE	COURSE TITLE	CATEGORI	PERIODS	L	Т	Ρ	С
1.	GE1004	Fundamentals of Nano Science	PE	3	3	0	0	3
2.	EI1861	Non-Linear Control Systems	PE	3	3	0	0	3
3.	EI1862	Unit Operation and Control	PE	3	3	0	0	3

4.	EI1863	Cyber Security for Industrial Automation	PE	3	3	0	0	3
5.	EI1864	Robotics and Automation	PE	3	3	0	0	3
6.	EI1865	Instrumentation in Petrochemical Industries	PE	3	3	0	0	3

OPEN ELECTIVE -I (VI SEMESTER)

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1.	OCS103	Introduction to Cloud Computing	OE	3	3	0	0	3
2.	OCS104	Database Management Systems	OE	3	3	0	0	3
3.	OME106	Testing of Materials	OE	3	3	0	0	3
4.	OBT104	Biosensors	OE	3	3	0	0	3
5.	OEE107	Solar and Wind Energy systems	OE	3	3	0	0	3
6.	OME104	Industrial Safety Engineering	OE	3	3	0	0	3
7.	OCE101	Air Pollution and Control	OE	3	3	0	0	3

OPEN ELECTIVE -II (VII SEMESTER)

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1.	OCS105	Data Analytics with R Programming	OE	3	3	0	0	3
2.	OME102	Design of Experiments	OE	3	3	0	0	3
3.	OME105	Product Design and Development	OE	3	3	0	0	3
4.	OME107	Vibration and Noise Control	OE	3	3	0	0	3
5.	OEC101	Introduction to Signals and Systems	OE	3	3	0	0	3
6.	OCH102	Process Modelling and Simulation	OE	3	3	0	0	3
7.	OMB101	Total Quality Management	OE	3	3	0	0	3

AUDIT COURSE

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	AD1001	Constitution of India	AC	3	2	0	0	0
2.	AD1002	Value Education	AC	3	2	0	0	0
3.	AD1003	Pedagogy Studies	AC	3	2	0	0	0
4.	AD1004	Stress Management by Yoga	AC	3	2	0	0	0
5.	AD1005	Personality Development Through Life Enlightenment Skills	AC	3	2	0	0	0
6.	AD1006	Unnati Bharat Abhiyan	AC	3	2	0	0	0
7.	AD1007	Essence of Indian Knowledge Tradition	AC	3	2	0	0	0
8.	AD1008	Sanga Tamil Literature Appreciation	AC	3	2	0	0	0

SEMESTER I

HS1101	COMMUNICATIVE ENGLISH	L	Т	Р	С			
	(Common for all Branches of B.E. / B. Tech Programmes)	3	0	0	3			
Objectives	· · · · · · · · · · · · · · · · · · ·							
•To develop th	he basic reading and writing skills of first year engineering and technology	v stu	dent	s.				
•To help lear	mers develop their listening skills, which will, enable them listen t	to le	ectui	es a	and			
compreher	d them by asking questions; seeking clarifications.							
•To help learn	ers develop their speaking skills and speak fluently in real contexts.							
•To help learn	ers develop vocabulary of a general kind by developing their reading skill	s.						
UNIT I	SHARING INFORMATION RELATED TO ONESELF/FAMILY&	k			9			
	FRIENDS							
Reading – ci	itical reading – finding key information in a given text – shifti	ng	fact	s fr	om			
opinions - Writing - autobiographical writing - developing hints. Listening- short texts- short								
formal and informal conversations. Speaking- basics in speaking - introducing oneself - exchanging								
personal information- speaking on given topics & situations Language development- voices- Wh-								
Questions- asking and answering-yes or no questions- parts of speech. Vocabulary development								
prefixes- suffi	xes- articles - Polite Expressions.							
UNIT II	GENERAL READING AND FREE WRITING				9			
Reading: Shor	t narratives and descriptions from newspapers (including dialogues and	con	vers	atior	ıs;			
Reading Com	prehension Texts with varied question types - Writing - paragraph	wr	iting	;- to	pic			
sentence- main	n ideas- free writing, short narrative descriptions using some suggested	voc	abul	ary a	and			
structures –.	Listening - long texts - TED talks - extensive speech on curre	nt a	affai	rs a	ınd			
discussions S	peaking – describing a simple process – asking and answering question	ons	- La	ingu	age			
development -	prepositions, clauses. Vocabulary development- guessing meanings of w	vord	s in	cont	ext			
-use of seque	nce words.							
UNIT III	GRAMMAR AND LANGUAGE DEVELOPMENT				9			
Reading- shor	t texts and longer passages (close reading) & making a critical analys	is o	f the	e giv	/en			
text Writing	- types of paragraph and writing essays - rearrangement of jumb	led	sen	tenc	es.			
Listening: Lis	tening to ted talks and long speeches for comprehension. Speaking- role	e pla	ays	- ask	ing			
about routine	actions and expressing opinions. Language development- degrees of	of c	comp	oaris	on-			
	ect vs. Indirect Questions. Vocabulary development - idioms and phy	rase	s- c	ause	e &			
-	ions, adverbs.							
UNIT IV	READING AND LANGUAGE DEVELOPMENT				9			
_	prehension-reading longer texts- reading different types of texts- maga				-			
letter writing, informal or personal letters-e-mails-conventions of personal email- Listening: Listening								
comprehension (IELTS, TOEFL and others). Speaking -Speaking about friends/places/hobbies -								
Language dev	elopment- Tenses- simple present-simple past- present continuous and p	ast	cont	inuo	us-			

conditionals – if, unless, in case, when and others Vocabulary development- synonyms-antonyms-Single word substitutes- Collocations.

UNIT V EXTENDED WRITING

Reading: Reading for comparisons and contrast and other deeper levels of meaning –Writingbrainstorming -writing short essays – developing an outline- identifying main and subordinate ideasdialogue writing- Listening - popular speeches and presentations - Speaking - impromptu speeches & debates Language development-modal verbs- present/ past perfect tense - Vocabulary development-Phrasal verbs- fixed and semi-fixed expressions.

TEXT BOOKS

TOTAL : 45 PERIODS

9

- 1.Board of Editors. Using English A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020
- 2.Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015.

3. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCE BOOKS

- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. Cengage Learning ,USA: 2007
- Redston, Chris &Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- 6. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. .

COURSE OUTCOMES

Upon completion of the course, students will be able to

-	•
CO1	Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
CO2	Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
CO3	Read different genres of texts adopting various reading strategies.
CO4	Listen/view and comprehend different spoken discourses/excerpts in different accents

CO5 Identify topics and formulate questions for productive inquiry

MAPPING OF COs WITH POs AND PSOs

Course Outcomes		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	J	k	l	1	2	3			
CO1	0	0	0	0	0	0	0	0	2	3	0	0	0	0	3			
CO2	0	1	0	2	0	0	0	0	0	3	0	0	0	0	0			
CO3	0	2	0	3	0	0	0	0	0	2	0	0	3	0	1			
CO4	0	0	0	0	0	0	0	0	2	2	0	0	1	0	2			
C05	0	2	1	1	2	0	2	0	0	3	0	0	1	0	1			

MA1102	ENGINEERING MATHEMATICS –I	L	Т	Р	С		
	(Common for all branches of B.E. / B. Tech Programmes)	4	0	0	4		
Objectives	· · · · · · · · · · · · · · · · · · ·						
•The goal of traditional	this course is to achieve conceptual understanding and to retain the be calculus.	est t	radit	ions	of		
•	is designed to provide the basic tools of calculus mainly for the purpose of g problems mathematically and obtaining solutions.	of m	ode	ling	the		
0	bra is one of the powerful tools to handle practical problems arising	in t	the f	field	of		
 This is a foundation course of Single Variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines. 							
UNIT I	MATRICES				12		
Eigenvalues a	nd Eigenvectors of a real matrix – Characteristic equation – Properties	of l	Eige	nval	ues		
C	nd Eigenvectors of a real matrix – Characteristic equation – Properties ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction		U				
and Eigenvect			U				
and Eigenvect	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction		U		atic		
and Eigenvect form to canoni UNIT II	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms.	n of	a qu	iadra	atic		
and Eigenvect form to canoni UNIT II Limit of a fu	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE	n of	a qu	iadra	atic		
and Eigenvect form to canoni UNIT II Limit of a fu	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE nction - Continuity - Derivatives - Differentiation rules – Interval of	n of	a qu	iadra	atic 12 and		
and Eigenvect form to canoni UNIT II Limit of a fu decreasing fun UNIT III	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE nction - Continuity - Derivatives - Differentiation rules – Interval of actions – Maxima and Minima - Intervals of concavity and convexity.	n of	a qu reasi	ng a	12 12 and 12		
and Eigenvect form to canoni UNIT II Limit of a fu decreasing fun UNIT III Partial differen	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE nction - Continuity - Derivatives - Differentiation rules – Interval of actions – Maxima and Minima - Intervals of concavity and convexity. CALCULUS OF SEVERAL VARIABLES	n of incr	reasi	ng ange	12 and 12 of		
and Eigenvect form to canoni UNIT II Limit of a fu decreasing fun UNIT III Partial different variables – Jac	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE nction - Continuity - Derivatives - Differentiation rules – Interval of actions – Maxima and Minima - Intervals of concavity and convexity. CALCULUS OF SEVERAL VARIABLES ntiation – Homogeneous functions and Euler's theorem – Total derivative	n of incl ve – for f	reasi	ng ange	12 and 12 of of		
and Eigenvect form to canoni UNIT II Limit of a fu decreasing fun UNIT III Partial different variables – Jac	ors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction ical form by orthogonal transformation – Nature of quadratic forms. CALCULUS OF ONE VARIABLE nction - Continuity - Derivatives - Differentiation rules – Interval of actions – Maxima and Minima - Intervals of concavity and convexity. CALCULUS OF SEVERAL VARIABLES ntiation – Homogeneous functions and Euler's theorem – Total derivative cobians – Partial differentiation of implicit functions – Taylor's series f – Maxima and minima of functions of two variables – Lagrang	n of incl ve – for f	reasi	ng ange	12 and 12 of of		

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

12

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Change of variables from Cartesian to polar in double integrals-Triple integrals – Volume of solids.

TOTAL : 60 PERIODS

1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Edition, 2014.

 James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 - 7.4 and 7.8].

REFERENCE BOOKS

TEXT BOOKS

1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.

2.Jain R.K. and Iyengar S.R.K., —Advanced Engineering Mathematics^{II}, Narosa Publications, New Delhi, 3rd Edition, 2007.

3.Narayanan, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.

4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.

5.T. Veerarajan. Engineering Mathematics – I, McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition dealing with quadratic forms.
 CO2 Understand the concept of limit of a function and apply the same to deal with continuity and derivative of a given function. Apply differentiation to solve maxima and minima problems, which are related to real world problems.
 CO3 Have the idea of extension of a function of one variable to several variables. Multivariable functions of real variables are inevitable in engineering.
 CO4 Understand the concept of integration through fundamental theorem of calculus. Also acquire

skills to evaluate the integrals using the techniques of substitution, partial fraction and integration by parts along with the knowledge of improper integrals.

CO5 Do double and triple integration so that they can handle integrals of higher order which are applied in engineering field.

Course Outcomes					Pr	ogran	n Outo	comes					Program Specif Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	1	2	3	0	0	3	2	3	3	2	2	1	
CO2	3	3	3	2	2	1	0	0	0	0	1	2	2	2	1	
CO3	3	3	3	2	2	1	0	0	0	0	1	2	2	1	1	
CO4	3	3	3	2	2	1	0	0	0	0	1	2	2	1	1	
C05	3	3	3	2	1	1	0	0	0	0	1	2	2	1	1	

MAPPING OF COs WITH POs AND PSOs

PH1103	ENGINEERING PHYSICS	L	Т	Р	C
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

•To make the students to understand about the elastic property and stress strain diagram.

- •To educate the students about principle of laser and its role in optical fibers and its applications as sensors and communication.
- •To teach the students about the heat transfer through solids and liquids.
- •To educate the students about the quantum concepts and its use to explain black body radiation, Compton effect, tunnelling electron microscopy and its applications.
- •To make the students to understand the importance of various crystal structures and various growth techniques.

9

9

UNIT I PROPERTIES OF MATTER

Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams.

UNIT II LASER AND FIBER OPTICS

Lasers : population of energy levels, Einstein's A and B coefficients derivation - resonant cavity, optical amplification (qualitative) - Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Laser– Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) - losses associated with optical fibers – Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber- Endoscopy-Fiber optic communication system.

UNIT III THERMAL PHYSICS

Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity -Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters.

UNIT IV **OUANTUM PHYSICS**

Black body radiation - Planck's theory (derivation) - Compton effect: theory and experimental verification - wave particle duality - electron diffraction - concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy.

UNIT V **CRYSTAL PHYSICS**

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - Graphite structurecrystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques-Epitaxial growth-Applications of Single crystal (Qualitative).

TEXT BOOKS

- Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019. 1.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019.

REFERENCE BOOKS

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.
- 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to

TOTAL : 45 PERIODS

9

9

9

a	Program Outcomes	Program Specific							
	MAPPING OF COs WITH POs AND PSOs								
CO5	O5 Understand the basics of crystals, their structures and different crystal growth techniques.								
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and								
CO3	Have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers.								
CO2	Acquire knowledge on the concepts of waves and optical devices and t optics.	heir applications in fibre							
CO1	Gain knowledge on the basics of properties of matter and its applications,								

Course					Pro	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	2	2	
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	2	3	
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2	
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3	
C05	3	3	3	3	2	1	2	1	3	1	1	3	3	3	3	

CY1104	L	Т	Р	С	
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3
Objectives		•			<u> </u>
•Principles o	f water characterization and treatment for industrial purposes.				
D · · · 1					

- •Principles and applications of surface chemistry and catalysis.
- •Phase rule and various types of alloys.
- •Various types of fuels, applications and combustion.

•Conventional and non-conventional energy sources and energy storage device.

UNIT I WATER AND ITS TREATMENT

Hardness of water – Types – Expression of hardness – Units – Estimation of hardness by EDTA method – Numerical problems on EDTA method – Boiler troubles (scale and sludge, caustic embrittlement , boiler corrosion, priming and foaming) – Treatment of boiler feed water – Internal treatment (carbonate, phosphate, colloidal, sodium aluminate and calgon conditioning) – External treatment – Ion exchange process, Zeolite process – Desalination of brackish water by reverse Osmosis.

9

9

UNIT II SURFACE CHEMISTRY AND CATALYSIS

Surface chemistry: Types of adsorption – Adsorption of gases on solids – Adsorption of solute from solutions – Adsorption isotherms – Freundlich's adsorption isotherm – Langmuir's adsorption isotherm – Kinetics of uni-molecular surface reactions – Adsorption in chromatography – Applications of

adsorption in pollution abatement using PAC.

Catalysis: Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis – Enzyme catalysis – Michaelis-Menten equation.

UNIT III PHASE RULE AND ALLOYS

Phase rule: Introduction – Definition of terms with examples – One component system – Water system – Reduced phase rule – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson process.

Alloys: Introduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloying elements – Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and bronze.

UNIT IV FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis of coal (proximate and ultimate). – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel.

Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method.

UNIT VNON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES9

Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactors – Classification of reactors – Light water nuclear reactor for power generation – Breeder reactor – Solar energy conversion – Solar cells – Wind energy – Fuel cells – Hydrogen-oxygen fuel cell . Batteries – Types of batteries - Alkaline batteries – Lead-acid, Nickel-cadmium and Lithium batteries.

TOTAL : 45 PERIODS

9

9

TEXT BOOKS

1.P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai Pub. Co., New Delhi,(2015).

2.S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2020).

3.S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. New Delhi, (2018).

4.P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009).

REFERENCE BOOKS

1.B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).

2.B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).

3. Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) Ltd., Delhi, (2015).

4.Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015).

5.A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media. New Delhi. (2010).6.Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018).

COURSE OUTCOMES

Upon completion of the course, students will be able to

	-
CO1	Able to understand impurities in industrial water, boiler troubles, internal and external treatment
COI	methods of purifying water.
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of
02	adsorption for pollution abatement, catalysis and enzyme kinetics.
	Able to recognize significance of alloying, functions of alloying elements and types of alloys,
CO3	uses of alloys. They should be acquainted with phase rule and reduced phase and its applications
	in alloying.
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be
0.04	able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.
	Able to understand conventional, non-conventional energy sources, nuclear fission and fusion,
CO5	power generation by nuclear reactor, wind, solar energy and preparation, uses of various
	batteries.

Course					Prog	gram	Outc	omes					-	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2	2		
CO2	3	3	2	2	2	2	2	1	1	1	1	2	1	1	1		
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2	2		
CO4	3	3	3	2	2	3	3	2	2	3	2	2	1	2	2		
C05	3	2	3	3	3	3	3	2	2	2	2	2	3	3	2		

GE1105	PROBLEM SOLVING AND PYTHON PROGRAMMING	L	Т	Р	C
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3
Objectives			1		
•To know	the basics of algorithmic problem solving				
•To write	simple python programs				
•To deve	lop python program by using control structures and functions				
•To use p	ython predefined data structures				
•To write	file-based program				
UNIT I	ALGORITHMIC PROBLEM SOLVING				9
	Building blocks of algorithms: statements, state, control flow, functions,	Nota	tion	nsei	nde

code, flow chart, programming language, Algorithmic problem solving: Basic algorithms, flowcharts and pseudocode for sequential, decision processing and iterative processing strategies, Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II INTRODUCTION TO PYTHON

Python Introduction, Technical Strength of Python, Python interpreter and interactive mode, Introduction to colab , pycharm and jupyter idle(s) ,Values and types: int, float, boolean, string, and list; Built-in data types, variables, Literals, Constants, statements, Operators: Assignment, Arithmetic, Relational, Logical, Bitwise operators and their precedence, Expressions, tuple assignment, Accepting input from Console, printing statements, Simple Python programs.

UNIT III CONTROL FLOW, FUNCTIONS AND STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue, and else; Modules and Functions: function definition and use, flow of execution, parameters and arguments, local and global scope, return values, function composition, recursion. Strings: string slices, immutability, string functions and methods, string module; Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: Defining list and list slicing, list operations, list slices, list methods, list loop, list Manipulation, mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples: tuple assignment, tuple as return value, tuple Manipulation; Dictionaries: operations and methods; advanced list processing – list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram.

UNIT V FILES, MODULES, PACKAGES

Files and exception: Concept of Files, Text Files; File opening in various modes and closing of a file, Format Operators, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(), readlines(),write(), writelines(),tell(),seek(), Command Line arguments; Errors and exceptions: handling exceptions; modules, packages; introduction to numpy, matplotlib. Illustrative programs: word count, copy a file.

TOTAL : 45 PERIODS

9

9

9

9

TEXT BOOKS

1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2nd edition,

Updated for Python 3, Shroff/O'Reilly Publishers, 2016

(http://greenteapress.com/wp/thinkpython/)

2. Guido van Rossum and Fred L. Drake Jr, - An Introduction to Python - Revised and

updated for Python 3.2, Network Theory Ltd., 2011.

3.Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019.

REFERENCE BOOKS

1.John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013

2. Robert Sedgewick, Kevin Wayne, Robert Dondero, -Introduction to Programming in

Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

3. Timothy A. Budd, - Exploring Python^{II}, Mc-Graw Hill Education (India) Private Ltd.,, 2015.

4.Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

5. Charles Dierbach, -Introduction to Computer Science using Python: A Computational

Problem-Solving Focus, Wiley India Edition, 2013.

6.Paul Gries, Jennifer Campbell and Jason Montojo, -Practical Programming: An Introduction.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop algorithmic solutions to simple computational problems
CO2	Develop simple console application in python
CO3	Develop python program by applying control structure and decompose program into functions.
CO4	Represent compound data using python lists, tuples, and dictionaries.
00	

CO5 Read and write data from/to files in Python.

MAPPING OF COs WITH POs AND PSOs

Course Outcomes					Prog	gram	Outc	omes					Prog (gram Sp Dutcom	oecific es
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
CO2	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
CO3	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
CO4	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
CO5	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2

GE1106	ENGINEERING GRAPHICS	L	Т	Р	C
	(Common for all branches of B.E. / B. Tech Programmes)	2	0	4	4
Objectives					

	kpose them to existing national standards related to technical drawings.	
	PTS AND CONVENTIONS (Not for Examination)]
-		
UNIT I	PLANE CURVES AND FREEHAND SKETCHING	7+12
ellipse, pa involutes Visualizat	ometrical constructions, Curves used in engineering practices: Conics – Construct arabola and hyperbola by eccentricity method – Construction of cycloid – construc- of square and circle – Drawing of tangents and normal to the above curves. ion concepts and Free Hand sketching: Visualization principles –Representation of nal objects – Layout of views- Freehand sketching of multiple views from pictorial v	ction of f Three
0010000		
UNIT II Orthograp Projection	PROJECTION OF POINTS, LINES AND PLANE SURFACE hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal plane of true lengths and true inclinations by rotating line method and traces Projection	planes
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal planes ation of true lengths and true inclinations by rotating line method and traces Projectly or lygonal and circular surfaces) inclined to both the principal planes by rotating object r PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the o one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF	points planes ction o method. 5+12
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to UNIT IV	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal planes ation of true lengths and true inclinations by rotating line method and traces Projectly and circular surfaces) inclined to both the principal planes by rotating object r PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the o one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES	points planes ction or method. 5+12 e axis is 6+12
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to UNIT IV Sectioning the princip	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal planes ation of true lengths and true inclinations by rotating line method and traces Project lygonal and circular surfaces) inclined to both the principal planes by rotating object r PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the o one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES g of above solids in simple vertical position when the cutting plane is inclined to the pal planes and perpendicular to the other – obtaining true shape of section. Develop	points planes ction of method. 5+12 e axis is 6+12 e one of
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to UNIT IV Sectioning the princip lateral sur	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal projection of true lengths and true inclinations by rotating line method and traces Projectly onlygonal and circular surfaces) inclined to both the principal planes by rotating object reprojection PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES g of above solids in simple vertical position when the cutting plane is inclined to the	points planes ction of method. 5+12 e axis is 6+12 e one of
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to UNIT IV Sectioning the princip lateral sur UNIT V Principles truncated vertical po	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal planes ation of true lengths and true inclinations by rotating line method and traces Projectly alygonal and circular surfaces) inclined to both the principal planes by rotating object real PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the o one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES g of above solids in simple vertical position when the cutting plane is inclined to the pal planes and perpendicular to the other – obtaining true shape of section. Develop faces of simple and sectioned solids – Prisms, pyramids cylinders and cones.	points planes ction of method. 5+12 e axis is 6+12 e one of oment of 6+12 lids and a simple
UNIT II Orthograp Projection Determina planes (po UNIT III Projection inclined to UNIT IV Sectioning the princip lateral sur UNIT V Principles truncated	hic projection- principles-Principal Planes-First angle projection-projection of of straight lines (only First angle projections) inclined to both the principal planes of true lengths and true inclinations by rotating line method and traces Projectly and circular surfaces) inclined to both the principal planes by rotating object response PROJECTION OF SOLIDS of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the o one of the principal planes by rotating object method. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES g of above solids in simple vertical position when the cutting plane is inclined to the pal planes and perpendicular to the other – obtaining true shape of section. Develop faces of simple and sectioned solids – Prisms, pyramids cylinders and cones. ISOMETRIC AND PERSPECTIVE PROJECTIONS of isometric projection – isometric scale –Isometric projections of simple sol solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in	points planes ction of method. 5+12 e axis is 6+12 e one of oment of 6+12 lids and a simple isual ray

2.Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011.

REFERENCE BOOKS

1.Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.

2.Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

3.Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.

- 4.Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5.N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.

6.Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the fundamentals and standards of Engineering graphics
CO2	Perform freehand sketching of basic geometrical constructions and multiple views of objects
CO3	Understand the concept of orthographic projections of lines and plane surfaces
CO4	Draw the projections of section of solids and development of surfaces
CO5	Visualize and to project isometric and perspective sections of simple solids

MAPPING OF COs WITH POs AND PSOs

Course Outcomes					Prog	gram	Outco	omes						ram Sp)utcom	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	1	2	1	1	0	0	3	3	2	3	1	1	0
CO2	3	1	2	2	1	1	0	0	3	3	2	3	1	1	0
CO3	3	1	1	3	1	1	0	0	3	3	2	3	1	1	0
CO4	3	1	1	3	1	1	0	0	3	3	2	3	1	1	0
CO5	3	1	2	3	1	1	0	0	3	3	2	3	1	1	0

GE1107	PYTHON PROGRAMMING LABORATORY	L	Т	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2
Objectives		•			

•To write, test, and debug simple Python programs.

•To implement Python programs with conditionals and loops.

•Use functions for structuring Python programs.

•Represent compound data using Python lists, tuples, and dictionaries.

•Read and write data from/to files in Python.

LIST OF EXPERIMENTS

1.Write an algorithm and draw flowchart illustrating mail merge concept.

2.Write an algorithm, draw flowchart and write pseudo code for a real life or scientific or technical problems

3. Scientific problem-solving using decision making and looping.

Armstrong number, palindrome of a number, Perfect number.

4.Simple programming for one dimensional and two-dimensional arrays.

Transpose, addition, multiplication, scalar, determinant of a matrix

5.Program to explore string functions and recursive functions.

6.Utilizing 'Functions' in Python

- •Find mean, median, mode for the given set of numbers in a list.
- •Write a function dups to find all duplicates in the list.
- •Write a function unique to find all the unique elements of a list.

•Write function to compute gcd, lcm of two numbers.

7.Demonstrate the use of Dictionaries and tuples with sample programs

8.Implement Searching Operations: Linear and Binary Search.

9. To sort the 'n' numbers using: Selection, Merge sort and Insertion Sort.

10. Find the most frequent words in a text of file using command line arguments.

11.Demonstrate Exceptions in Python.

12. Applications: Implementing GUI using turtle, pygame.

TOTAL: 60 PERIODS

REFERENCE BOOKS

1.Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019

2.Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.

3.Shroff "Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.

4.David M.Baezly "Python Essential Reference". Addison-Wesley Professional; Fourth edition, 2009.5.David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013)

WEB REFERENCES

1.http://www.edx.org

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Develop simple console applications through python with control structure and functions

CO2	Use py data.	thon l	ouilt ii	n data	struct	tures	like lis	sts, tuj	ples, a	and di	ctiona	ries fo	or rep	resentii	ng com	pound
CO3	Implen	nent P	ython	prog	rams v	with c	onditi	onals	and lo	oops.						
CO4	Read a	and write data from/to files in Python and applications of python.														
CO5	Develo	op Pyt	hon p	rograr	ns ste	p-wis	e by d	efinin	ıg fun	ctions	and c	alling	them	1.		
				M	APPI	NG O	F CC)s WI	TH P	Os Al	ND P	SOs				
Co	ourse					Prog	gram	Outco	omes	-	-		-	0	ram Sp Jutcom	
Out	comes	а	b	с	d	e	f	g	h	i	j	k	l	1	2	3
0	CO1	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
0	CO2	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
0	CO3	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
0	CO4	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2
	CO5	3	3	3	3	2	0	0	0	0	2	2	2	3	3	2

BS1108	PHYSICS AND CHEMISTRY LABORATORY	L	Т	Р	С
	(Common for all branches of B.E. /B. Tech Programmes)	0	0	4	2
Objectives			1		1
The students wi	ll be trained to perform experiments to study the following.				
•The Properties	of Matter				
•The Optical pr	operties, Characteristics of Lasers & Optical Fibre				
•Electrical & T	hermal properties of Materials				
•Enable the stue	dents to enhance accuracy in experimental measurements.				
•To make the st	udent to acquire practical skills in the determination of water quality	para	mete	ers	
through volu	umetric analysis				
•Instrumental m	nethod of analysis such as potentiometry, conductometry and pH metr	y			
LIST OF EXP	ERIMENTS- PHYSICS				
A minimum of	5 experiments to be performed from the given list)				
	n of Young's modulus of the material of the given beam by				CO1
Non-uniforr	n bending method.				
	on of rigidity modulus of the material of the given wire using torsion				004
pendulum.					CO1
3. Determinati	on of wavelength of mercury spectra using Spectrometer and grating.				
4. Determination	on of dispersive power of prism using Spectrometer.				

(b)]	Determination of wavelength and particle size using a laser.	CO2
()]	Determination of numerical aperture and acceptance angle of an optical fibre.	CO2
	Determination of width of the groove of compact disc using laser	CO2
	ermination of Young's modulus of the material of the given beam by uniform	C01
	ding method.	
	ermination of energy band gap of the semiconductor. ermination of coefficient of thermal conductivity of the given bad conductor using	CO2
	s's disc.	CO2
	DNSTRATION EXPERIMENT	CO1
	nination of thickness of a thin sheet / wire – Air wedge method	
	LIST OF EXPERIMENTS – CHEMISTRY	
(A min	imum of 6 experiments to be performed from the given list)	
	nation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in	CO5
1.25011	water sample.	
2 Detei	rmination of total, temporary & permanent hardness of water by EDTA method.	
		CO5
	rmination of DO content of water sample by Winkler's method.	CO5
	rmination of chloride content of water sample by argentometric method.	
	nation of copper content of the given solution by Iodometry.	CO3
	rmination of strength of given hydrochloric acid using pH meter.	CO3
	rmination of strength of acids in a mixture of acids using conductivity meter.	CO3
8.Estin	nation of iron content of the given solution using potentiometer.	CO4
9.Deter	rmination of molecular weight of polyvinyl alcohol using Ostwald viscometer.	CO4
10.	Conductometric titration of strong acid vs strong base.	
DEM	ONSTRATION EXPERIMENTS	CO4
1.Estin	nation of iron content of the water sample using spectrophotometer (1, 10-	CO4
	Phenanthroline / thiocyanate method).	001
2. Es	stimation of sodium and potassium present in water using flame photometer.	
		CO3
		CO5
	TOTAL: 60 Pl	ERIODS
COUR	RSE OUTCOMES	
Upon (completion of the course, students should be	
	Able to understand the concept about the basic properties of matter like stress, strain an	nd types
CO1	of moduli	
CO1	Able to understand the concept of optics like reflection, refraction, diffraction by using	
	spectrometer grating.	
CO2	Able to understand the thermal properties of solids, specific heat and some models for	specific

	heat ca		tion																		
				d the	worki	no nri	incinle	of la	ser co	mnon	ents a	nd w	orking	g of diff	ferent l	aser					
	system		215ta11	u uic	WOIKI	ng pri	incipit	2 01 14		mpon			JIKIIIE	, or un		4301					
	Able t		erstan	d the	nheno	meno	n of li	ioht a	nnlic	ations	of fib	re on	ics								
					-			-						neter							
CO3	Able to understand the concept of determining the pH value by using pH meter. Able to understand the concept about the amount of chloride present in the given sample of																				
	water.																				
	Able t	o unde	erstan	d the	conce	pt of o	detern	nining	the e	mf va	lues b	y usir	ng pot	entiom	eter						
CO4	Able t	o unde	erstan	d the	conce	pt abo	out the	e meas	surem	ent of	cond	uctand	ce of s	strong a	acid and	b					
	strong base by using conductivity meter.																				
	Able t	Able to understand the amount of dissolved oxygen present in the water.																			
CO5		Able to understand the concept of estimation of hardness of water by EDTA method. Able to understand the concept of estimation of alkalinity in water sample.																			
	Able t	o unde	erstan			-							mple.								
				M	APPI	NG O	OF CC)s WI	TH P	Os A	ND P	SOs		D	0	• ••					
Co	ourse					Prog	gram	Outco	omes						-	am Specific					
Out	comes					·								0	Outcomes						
Out	comes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3					
C	201	3	1	2	2	2	1	1	1	3	2	2	3	2	2	1					
C	202	3	1	2	1	1	1	1	1	2	1	1	2	2	1	2					
C	203	3	1	2	1	2	2	2	1	2	1	1	1	2	2	1					
C	204	3	2	1	1	2	1	1	1	2	1	1	2	2	1	2					
		3	2		1	1	2	2		2		2	1	2	2	2					

	SEMESTER II													
HS1201	PROFESSIONAL ENGLISH	L	Т	P	С									
(Common for all branches of B.E. / B. Tech Programmes) 3 0														
Objectives														
•Develop stratechnology	tegies and skills to enhance their ability to read and comprehend engineeri y texts.	ng a	nd											
•Foster their a	bility to write convincing job applications and effective reports.													
•Develop thei	r speaking skills to make technical presentations, participate in group discu	ussio	ons.											
•Strengthen th	heir listening skill which will help them comprehend lectures and talks in t	heir	area	s of										
specializat	tion.													
UNIT I	READING AND STUDY SKILLS				9									

Listening-Listening Comprehension of a discussion on a technical topic of common interest by three or four participants (real life as well as online videos). -Speaking – describing a process- Reading: Practice in chunking and speed reading - Paragraphing- Writing- interpreting charts, graphs-Vocabulary Development: Important foreign expressions in Use, homonyms, homophones, homographs- easily confused words Language Development- impersonal passive voice, numerical

UNIT II		
Tistenine Tist	READING AND STUDY SKILLS	9
four participa Practice in o Vocabulary homographs- adjectives.	ening Comprehension of a discussion on a technical topic of common interest by three nts (real life as well as online videos)Speaking – describing a process- Readi chunking and speed reading - Paragraphing- Writing- interpreting charts, grap Development: Important foreign expressions in Use, homonyms, homophon easily confused words Language Development- impersonal passive voice, numeri	ng hs nes ica
UNIT III	TECHNICAL WRITING AND GRAMMAR	9
& pronunciati understanding Vocabulary I	stening to conversation – effective use of words and their sound aspects, stress, intonat on - Speaking – mechanics of presentations -Reading: Reading longer texts for detai . (GRE/IELTS practice tests); Writing-Describing a process, use of sequence wor Development- sequence words- Informal vocabulary and formal substitutes-Misspel age Development- embedded sentences and Ellipsis.	lec ds
UNIT IV	REPORT WRITING	9
advertisement Résumé prepa	agreement, assertiveness in expressing opinions-Reading: Technical repo s and minutes of meeting - Writing- email etiquette- job application – cover lette aration(via email and hard copy)- analytical essays and issue based essaysVocabul finding suitable synonyms-paraphrasing- Language Development- clauses-	r - ary
UNIT V	GROUP DISCUSSION AND JOB APPLICATIONS	9
0	tensive Listening. (radio plays, rendering of poems, audio books and others) Speaking in a group discussion - Reading: Extensive Reading (short stories, novels, poetry a	<u> </u>
to the Editor	ing reports- minutes of a meeting- accident and survey- Writing a letter/ sending an em - cause and effect sentences -Vocabulary Development- verbal analogies. Langua reported speech.	nai age
to the Editor Development-	- cause and effect sentences -Vocabulary Development- verbal analogies. Langua reported speech. TOTAL: 45 PERIO	nai age
to the Editor	- cause and effect sentences -Vocabulary Development- verbal analogies. Langua reported speech. TOTAL: 45 PERIO	nai age
to the Editor Development TEXT BOOH 1.Board of ed Blackswar 2.Barun K Mi 3.Sudharshan	- cause and effect sentences -Vocabulary Development- verbal analogies. Langua reported speech. TOTAL: 45 PERIO	nai age
to the Editor Development TEXT BOOH 1.Board of ed Blackswar 2.Barun K Mi 3.Sudharshan	 - cause and effect sentences -Vocabulary Development- verbal analogies. Languate reported speech. TOTAL: 45 PERIO KS Itors. Fluency in English A Course book for Engineering and Technology. Orient n, Hyderabad: 2020. tra, Effective Technical Communication Oxford University Press: 2006. a.N.P and Saveetha. C. English for Technical Communication. Cambridge University v Delhi, 2016. 	nai age

5.Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage Learning, USA: 2007.

6.Caroline Meyer & Bringi dev, communicating for Results Oxford University Press: 2021.7.Aruna Koneru, Professional Speaking Skills, Oxford University Press: 2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- **CO1** Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- **CO2** Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- **CO3** Read different genres of texts adopting various reading strategies.
- CO4 Listen/view and comprehend different spoken discourses/excerpts in different accents
- **CO5** Identify topics and formulate questions for productive inquiry

MAPPING OF COs WITH POs AND PSOs

Course Outcomes			Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	0	0	0	0	0	0	0	1	2	3	0	0	0	0	1
CO2	0	1	0	2	0	0	0	0	0	3	0	0	0	1	2
CO3	0	2	0	3	0	0	0	0	1	2	0	0	0	1	2
CO4	0	0	0	0	1	0	0	0	2	2	0	0	0	2	1
C05	0	2	1	1	2	0	2	0	0	3	0	0	3	3	3

		_	-	C
(Common for all branches of B.E. / B. Tech Programmes Except AI-DS & AI-ML) 4	4	0	0	4

Objectives

•This course is designed to cover topics such as Differential Equation, Vector Calculus, Complex Analysis and Laplace Transform. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines

UNIT I	ORDINARY DIFFERENTIAL EQUATIONS	12
Higher order	linear differential equations with constant coefficients - Method of variation	n of
parameters- I	Homogenous equation of Euler's and Legendre's type - System of simultaneous li	inear
differential eq	uations with constant coefficients.	

UNIT II VECTOR CALCULUS

Gradient and directional derivative - Divergence and curl - Vector identities - Irrotational and

12

Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III COMPLEX VARIABLES

Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function – Conformal mapping – Mapping by functions w = Z + C, CZ, 1/Z - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals – Use of circular contour and semicircular contour(excluding poles on the real line).

UNIT V LAPLACE TRANSFORMS

Existence conditions – Transforms of elementary functions –Basic properties – Transform of unit step function and unit impulse function - Shifting theorems - transforms of derivatives and integrals — Inverse transforms – Convolution theorem – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

TOTAL : 60 PERIODS

TEXT BOOKS

- 1.Grewal B.S., —Higher Engineering Mathematicsl, Khanna Publishers, New Delhi,43rd Edition, 2014.
- 2.Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016

REFERENCE BOOKS

1.G Bali N., Goyal M. and Watkins C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.

2.Jain R.K. and Iyengar S.R.K., — Advanced Engineering Mathematics I, Narosa Publications, New Delhi, 3rd Edition, 2007.

3.0'Neil, P.V. —Advanced Engineering Mathematics^{II}, Cengage Learning India Pvt., Ltd, New Delhi, 2007.

4.Sastry, S.S, —Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd,4th Edition, New Delhi, 2014.

5.Wylie, R.C. and Barrett, L.C., —Advanced Engineering Mathematics —Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to										
CO1	Apply various techniques in solving differential equations									
CO2	Gradient, divergence and curl of a vector point function and related identities									

12

12

12

CO3			of lin erifica	-	face a	nd vo	lume i	ntegra	ls usi	ng Ga	uss, S	tokes	and G	reen's	theore	ms	
CO4	Anal	ytic fi	unctio	ns, co	nform	al maj	pping	and co	omple	x integ	gratio	1					
CO5	-	Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients															
				M	APPI	NG O	F CO	s WI]	TH PC)s AN	D PS	Os					
	Program Outcomes													Program Specifi Outcomes			
Outco	omes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CC)1	3	3	3	3	2	1	0	0	0	0	1	2	2	1	1	
CC)2	3	3	3	1	1	1	0	0	0	0	2	1	2	1	1	
CC)3	3	3	3	2	1	1	0	1	0	0	1	1	1	1	1	
CC)4	3	3	3	1	0	0	0	0	0	0	1	0	1	1	1	
CO)5	3	3	3	1	0	0	0	0	0	0	1	0	1	1	1	

PH1253PHYSICS FOR ELECTRONICS ENGINEERINGLTPC(Common to EEE, ECE, EIE)3003

Objectives

UNIT - I

- Understand the transport properties of conducting materials and their modelling using classical and quantum theories,
- Comprehend the origin of magnetic and superconducting properties in different materials and their engineering applications,
- Grasp the principles of dielectric materials and its applications.

CONDUCTING MATERIALS

- Understand the key factors for effective design of an optoelectronic device by its energy efficiency, and
- Analyze the structure-property of nano materials and their applications.

Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, expression - Wiedemann-Franz law – Success and failures - electrons in metals – Particle in a three dimensional box – degenerate states – Fermi- Dirac statistics – Density of energy states – Electron in periodic potential: Bloch theorem – metals and insulators - Energy bands in solids– tight binding approximation - Electron effective mass – concept of hole.

9

UNIT - IIPHYSICS OF SEMICONDUCTOR DEVICES9Intrinsic Semiconductors - Energy band diagram - direct and indirect semiconductors - Carrierconcentration in intrinsic semiconductors - extrinsic semiconductors - Carrier concentration in N- type& P-type semiconductors - Carrier transport: Velocity-electric field relations - drift and diffusion

transport -Einstein's relation – Hall effect and devices – Zener and avalanche breakdown in p-n junctions – Zener diode as voltage regulator- Ohmic contacts – tunnel diode - Schottky diode- MOS Capacitor.

UNIT - III MAGNETIC AND DIELECTRIC MATERIALS

Origin of magnetic moment – Bohr magneton – Microscopic and macroscopic classification of magnetic materials : comparison of diamagnetism , para magnetism and ferro magnetism – Domain theory – Hysteresis (based on domain theory) – soft and hard magnetic materials – Ferrites – applications. Dielectric materials: Polarization processes – dielectric loss – internal field – Clausius-Mosotti relation- dielectric breakdown.

UNIT - IV OPTICAL MATERIALS

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and Semiconductors (concepts only) - photo current in a P- N diode – solar cell –photo detectors - LED – Organic LED – excitons - quantum confined Stark effect – Quantum dot laser, Quantum well laser.

UNIT - V NANODEVICES

Introduction - electron density in bulk material – Size dependence of Fermi energy– quantum confinement – quantum structures - Density of states in quantum well, quantum wire and quantum dot structures – resonant tunneling – quantum interference effects –mesoscopic structures – Coulomb blockade effects- Single electron phenomena and Single electron Transistor – magnetic semiconductors– spintronics, Spintronic Devices : Spin Valve - Spin FET, Carbon nanotubes: Types ,Preparation- CVD, Properties and applications.

TOTAL : 45 PERIODS

TEXT BOOKS

Umesh K Mishra & Jasprit Singh, "Semiconductor Device Physics and Design", Springer, 2008
 Adaptation by Balasubramanian, R, Callister "Material Science and Engineering", Wiley India Pvt.

Ltd., 2nd Edition, 2014.

3. Mani.P, "Physics for Electronics Engineering", Dhanam Publishers, 2017.

4.Salivahanan,S., Rajalakshmi,A., Karthie,S., Rajesh,N.P., "Physics for Electronics Engineering and Information Science", McGraw Hill Education (India) Private Limited, 2018.

REFERENCE BOOKS

1. Traugott Fischer, "Materials Science for Engineering Students", Ist Edition, Elsevier, 2009

2.Budinski, K.G. & Budinski, M.K. "Engineering Materials Properties and Selection", Prentice Hall, 2009.

3.Rogers, B., Adams, J.& Pennathur, S."Nanotechnology: Understanding Small Systems". CRC Press,2014

4. Hanson, G.W. "Fundamentals of Nanoelectronics". Pearson Education, 2009

5.Kwok Ng, Simon Sze, and Yiming Li," Physics of Semiconductor Devices", 2006.

9

9

9

COU	RSE OU	JTCC	OMES	5												
Upon	comple	tion o	of the	cours	se, stu	dents	will t	oe abl	e to							
CO1	Gain k band s		0	on clas	sical	and qu	iantur	n free	electr	on the	eories	and fo	ormati	on of e	energy	
CO2	Gain k	nowle	edge o	on sem	nicond	ucting	g devi	ces an	d its a	pplica	ations.					
CO3	Acquir	cquire knowledge on magnetic and superconducting materials and their applications.														
CO4		Understand the relationship of optoelectronic materials and their applications in various domains.														
CO5	Acquir	e kn	owled	ge abo	out the	e nano	struc	tures a	and its	appli	catior	IS				
				Μ	APPI	NG O	F CO	s WI	TH P	Os Al	ND PS	SOs				
	ourse			M	APPI		oF CO gram			Os AN	ND PS	SOs		U	ram Sp utcom	
	ourse comes	a	b	M c	APPI d					Os AN	ND PS	SOs k	1	U	-	
Out		a 3	b 3			Pro	gram	Outco	omes				l 1	0	utcom	es
Out	comes			с	d	Prog	gram f	Outco	omes h	i	j	k	-	0 1	utcom	es 3
Out C C	comes	3	3	c 3	d 2	Prog e 2	gram f 1	Outco g 2	h 1	i 1	j 1	k 2	1	0 1 3	utcom 2 2	es 3 2
Out C C	comes 201 202	3	3 3	c 3	d 2 1	Prog e 2 3	gram f 1	Outco g 2 1	h 1	i 1 2	j 1 2	k 2 2	1	0 1 3 3	utcom 2 2 3	es 3 2 2 2

GE1204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Τ	Р	С
	(Common for all branches of B.E. / B. Tech Programmes)	3	0	0	3

Objectives

•To study the inter relationship between living organism and environment.

- •To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- •To find and implement scientific, technological, economic and political solutions to environmental problems.
- •To study the integrated themes and biodiversity, natural resources, pollution control and waste management.
- •To study the dynamic processes and understand the features of the earth's interior and surface.

UNIT I

ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY

Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food chains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of

9

forest, grass land, desert and aquatic (ponds, lakes, rivers, oceans, estuaries) ecosystem. Biodiversity -Definition - Genetic, species and ecosystem diversity - Value of biodiversity - Consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels – India as a mega-diversity nation – Hot spots of biodiversity – Threats to biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife protection act and forest conservation act –Endangered and endemic species – Conservation of biodiversity – In-situ and ex-situ conservation of biodiversity.

UNIT II

UNIT V

ENVIRONMENTAL POLLUTION

Definition - Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solid wastes - Problems of ewaste - Role of an individual in prevention of pollution - Pollution case studies - Disaster management - Floods, earthquake, cyclone, tsunami and landslides - Field study of local polluted site - Urban / Rural / Industrial / Agricultural.

9

9

9

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation - Deforestation - Case studies - Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water - Dams: benefits and problems -Mineral resources: Use and exploitation – Environmental effects of extracting and using mineral resources - Case studies - Food resources: World food problems - Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer-pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources - Use of alternate energy sources - Case studies - Land resources: Land as a resource - Land degradation, man induced landslides, soil erosion and desertification - Role of an individual in conservation of natural resources - Equitable use of resources for sustainable lifestyles - Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development - Urban problems related to energy - Water conservation, rain water harvesting, watershed management - Resettlement and rehabilitation of people; its problems and concerns, case studies - Role of non-governmental organization -Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products - Principles of Green Chemistry - Environment protection act - Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act - Forest conservation act - Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness.

HUMAN POPULATION AND THE ENVIRONMENT Population growth - Variation among nations - Population explosion - Family welfare programme - Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies.

TOTAL : 45 PERIODS
TEXT BOOKS
1.Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson
Education, (2004).
3.Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", Airwalk
Publications, Chennai, (2018).
REFERENCE BOOKS
1.Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).
2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hydrabad,
(2015).
3.G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt. Ltd,
Delhi, (2014).
4.R. Rajagopalan, 'Environmental Studies-From Crisis to Cure', Oxford University Press, (2005).
5. Anubha Kaushik, C.P. Kaushik, "Perspectives in Environmental Studies", New Age International
Pvt. Ltd, New Delhi, (2004).
6.Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).
COURSE OUTCOMES
Upon completion of the course, students will be able to
CO1 Obtain knowledge about environment, ecosystems and biodiversity.
CO2 Take measures to control environmental pollution.
CO3 Gain knowledge about natural resources and energy sources.
CO4 Find and implement scientific, technological, economic and political solutions to environmental
problems.
CO5 Understand the impact of environment on human population.

MAPPING OF COs WITH POs AND PSOs

Course					Prog	gram	Outco	omes						oecific es	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	1	1	1	1	1	2	1	2	1	2	1	3	2	2	2
CO2	1	2	3	3	1	3	3	2	1	2	1	3	2	2	1
CO3	2	2	2	1	2	2	1	2	1	2	1	3	2	2	3
CO4	1	1	3	2	2	2	3	3	2	2	1	2	1	2	2
C05	2	2	3	2	1	2	2	1	2	1	2	3	3	3	1

GE1205	BASIC CIVIL AND MECHANICAL ENGINEERING I	L	Т	P	C
	(Common to BioTech, CHEMICAL, EEE, EIE) 3	3	0	0	3
Objectives					
•The objectiv	re of this course is to introduce basic knowledge on Civil Engineeri	ing	Ma	iter	ials
Surveying	, Foundations, Civil Engineering Structures, IC Engine, Working Princi	iple	e of	Po	wei
Plant, Acc	essories Of Power Plant, Refrigeration And Air Conditioning System				
UNIT – I	SCOPE OF CIVIL AND MECHANICAL ENGINEERING				(
Overview of	Civil Engineering - Civil Engineering contributions to the welfare	of	So	ciet	у -
Specialized	sub disciplines in Civil Engineering – Structural, Construction,	Ge	otec	chn	ical
Environmenta	l, Transportation and Water Resources Engineering				
Overview of	Mechanical Engineering - Mechanical Engineering contributions to the	he	wel	fare	e o
Society –Spec	cialized sub disciplines in Mechanical Engineering - Production, Autom	nobi	ile,	En	ergy
Engineering -	Interdisciplinary concepts in Civil and Mechanical Engineering.				
UNIT - II	SURVEYING AND CIVIL ENGINEERING MATERIALS				Ģ
Sumoving. (0	lou	alir	10
	bjects – classification – principles – measurements of distances – angles	s –	lev	em	ig -
	of areas– contours - examples.	. 1			1
Civil Enginee	ering Materials: Bricks - stones - sand - cement - concrete - steel - tim	nne	r – 1	moe	ieri
, • 1		noc	1		
			<u> </u>		
UNIT - III Foundations:	BUILDING COMPONENTS AND STRUCTURES Types of foundations - Bearing capacity and settlement - Requirement				12
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way.	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high	mer ntel	nt o s – nd I	f g roo Dan	12 3000 fing ns -
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way.	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linstering – floor area, carpet area and floor space index - Types of Bridges	mer ntel	nt o s – nd I	f g roo Dan	12 3000 fing ns - rai
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high	mer ntel s an h w	nt o s – nd I yay a	f g roo Dan and	12 3000 fing ns - rai 12
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS	men ntel s an h w	nt o s – nd I yay a	f g roo Dan and Vorl	fing rai
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla	men ntel s an h w	nt o s – nd I /ay a – W fou:	f g roo Dan and Vorl	fing rai 12 rai
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power platetrol and Diesel Engines – Four stroke and two stroke cycles – Comparison	mer ntel s an h w unt of Nuc	nt o s – nd I ⁄ay : – W fou:	f g roo Dan and Vorl r stu	12 cood fing ns - rai 12 king coke
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke	Types of foundations - Bearing capacity and settlement – Requirement ering Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges osources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and c	mer ntel s an h w unt of Nuc	nt o s – nd I ⁄ay : – W fou:	f g roo Dan and Vorl r stu	12 cood fing ns - rai 12 king coke
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke plants — work and Centrifuga	Types of foundations - Bearing capacity and settlement – Requirement ering Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges osources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and c	mer ntel s an h w unt of Nuc	nt o s – nd I ⁄ay : – W fou:	f g roo Dan and Vorl r stu	12 5000 fing ns - rai 12 king coke we ing
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke plants — work and Centrifuga	Types of foundations - Bearing capacity and settlement – Requiremering Structures: Brick masonry – stonemasonry – beams – columns – linestering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power platetrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and cal Pumps.	mer ntel s an h w unt of Nuc dou	nt o s – nd I 7ay a fou: blean 1ble	f g roo Dan and Vorl r stu : Po act	12 good fing ns - rai 12 coke wee ing 6
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke plants — work and Centrifuga UNIT - V Terminology	Types of foundations - Bearing capacity and settlement – Requirement ering Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges - sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and cal Pumps. REFRIGERATION AND AIR CONDITIONING SYSTEM	mer ntel s an h w unt of Nuc dou	nt o s – nd I ⁄ay : – W fou: blean ible	f g roo Dan and Vorl r stu : Po act	12 good fing ns - rai 12 coke wee ing 6
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke plants — work and Centrifuga UNIT - V Terminology	Types of foundations - Bearing capacity and settlement – Requirem ering Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges • sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and c al Pumps. REFRIGERATION AND AIR CONDITIONING SYSTEM of Refrigeration and Air Conditioning. Principle of vapour compression a	mer ntel s an h w of Nuc dou	nt o s – nd I 7ay a fou: blean ible abs r.	f g roo Dan and Vorl r stu : Po act	12 good fing ns - rai 12 coke we ing 6 tion
Foundations: foundations. Civil Engines flooring – pla water supply - way. UNIT - IV Classification principle of Per and two stroke plants –- work and Centrifuga UNIT - V Terminology	Types of foundations - Bearing capacity and settlement – Requirement ring Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power pla etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and cal Pumps. REFRIGERATION AND AIR CONDITIONING SYSTEM of Refrigeration and Air Conditioning. Principle of vapour compression a t of typical domestic refrigerator–Window and Split type room Air condition TOTAL :	mer ntel s an h w of Nuc dou	nt o s – nd I 7ay a fou: blean ible abs r.	f g roo Dan and Vorl r stu : Po act	12 good fing ns - rai 12 coke we ing 6 tion
UNIT - III Foundations: foundations. Civil Enginee flooring – pla water supply - way. UNIT - IV Classification principle of Pe and two stroke plants — work and Centrifuga UNIT - V Terminology of system–Layou TEXT BOOK 1.Shanmugam	Types of foundations - Bearing capacity and settlement – Requirement Fring Structures: Brick masonry – stonemasonry – beams – columns – line stering – floor area, carpet area and floor space index - Types of Bridges - sources and quality of water - Rain water harvesting - introduction to high INTERNAL COMBUSTION ENGINES AND POWERPLANTS of Power Plants - Internal combustion engines as automobile power plate etrol and Diesel Engines – Four stroke and two stroke cycles – Comparison e engines – Working principle of steam, Gas, Diesel, Hydro - electric and N ing principle of Boilers, Turbines, Reciprocating Pumps (single acting and cal Pumps. REFRIGERATION AND AIR CONDITIONING SYSTEM of Refrigeration and Air Conditioning. Principle of vapour compression a tt of typical domestic refrigerator–Window and Split type room Air condition TOTAL : XS G and Palanichamy MS, "Basic Civil and Mechanical Engineering", Tata M Co., NewDelhi, 1996.	mer ntel s an h w of Nuc dou and oner 45	nt o s – nd I /ay : fou: clean ible abs r. PEI	f g roo Dan and Vorl r stu : Po act Orp RIC	1: good fing ns - rai 1: king cok we ing 6 tion

1. Palanikumar, K. Basic Mechanical Engineering, ARS Publications, 2010.

2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd. 1999.

3. See tharaman S., "BasicCivil Engineering", AnuradhaAgencies, 2005.

- 4. ShanthaKumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000.
- 5. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers,

Kumbakonam, 2000.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO2 | To familiarize the materials and measurements used in Civil Engineering.

CO3 To provide the exposure on the fundamental elements of civil engineering structures.

CO4 To enable the students to distinguish the components and working principle of power plant, IC engines

CO5 To provide the exposure on the fundamental elements of R & AC system.

Course		Program Outcomes											Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	2	3	3	3	-	3	2	2	3	3	2	2	
CO2	3	2	3	3	3	3	2	-	2	1	1	3	3	2	1	
CO3	3	2	3	3	2	3	2	-	3	2	1	3	3	2	1	
CO4	3	2	3	2	2	3	2	I	3	2	2	3	3	3	2	
C05	3	2	3	2	2	3	2	I	2	2	1	3	2	3	2	

MAPPING OF COs WITH POs AND PSOs

EE1271	PRINCIPLES OF ELECTRICAL, ELECTRONICS AND COMMUNICATION ENGINEERING	L	Т	Р	С
	(Common to EEE & EIE)	3	0	0	3
Objectives					
o understand the	e basic concepts of electric circuits and wiring practices.				
o study about th	e three phase system and magnetic circuits				
o understand the	e working principle of electronic devices.				
o study the worl	king of current controlled and voltage controlled devices.				
o understand the	e basic concepts of communication systems.				
UNIT I	BASIC ELECTRIC CIRCUITS AND DOMESTIC WIRING				9
Electrical circu	it elements (R, L and C)-Dependent and independent sources - Ohm's	Law,	Kirc	chho	ff's

laws - Single phase AC circuits: Phasor – RMS and Average values-sinusoidal steady state response of simple RLC circuits - Types of wiring- Domestic wiring - Electrical Safety - Protective devices and Earthing.

UNIT II THREE PHASE CIRCUITS AND MAGNETIC CIRCUITS

Evolution of Three phase circuits from single phase circuits – Star connection – Delta connection – Balanced and Unbalanced Loads- Power in three-phase circuits -Magnetic circuits- Definitions-MMF, Flux, Reluctance, Magnetic field intensity, Flux density, Fringing, self and mutual inductances-simple problems.

UNIT III	BASICS OF ELECTRONICS

P-N junction diode - VI Characteristics, static and dynamic resistance, Diffusion and drift current densities, transition & diffusion capacitance - Zener diode - VI Characteristics, Zener and avanlache Breakdown, Zener Voltage Regulator. Diode Rectifier & Filter circuits – LC Filters-PIN and Photo Diode, Photo Transistor.

UNIT IV CURRENT CONTROLLED AND VOLTAGE CONTROLLED DEVICES

Current controlled devices: Construction, operation and characteristics of BJT, UJT, and SCR. Voltage controlled devices: Construction, operation and characteristics of JFET and MOSFET.

UNIT VFUNDAMENTAL OF COMMUNICATION ENGINEERING9Introduction – Elements of communication systems – Modulation and Demodulation: principle pfamplitude and frequency modulation. Digital communication - Nyquist Sampling Theorem, Pulse CodeModulation, Delta Modulation, BPSK, QPSK(Qualitative Approach)- Communication systems: RadioAntenna, TV, satellite and optical fibre (Block diagram approach only).

TOTAL : 45 PERIODS

9

9

9

TEXT BOOKS

- Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", McGraw Hill Education, 2014.
- Del Toro, "Electrical Engineering Fundamentals", Second edition, Pearson Education, New Delhi, 2015.
- 3. John Bird, "Electrical Circuit theory and technology", Routledge; 5th edition, 2013.

REFERENCE BOOKS

1. Thomas L. Floyd, 'Electronic Devices', 10th Edition, Pearson Education, 2018.

2. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7thedition, 2017.

3.Kothari DP and I.J Nagrath, "Basic Electrical Engineering", McGraw Hill, 2010.

4. Muhammad H.Rashid, "Spice for Circuits and electronics", 4th edition. Cengage 2019.

5.V.K. Mehta and Rohit Mehta, 'Principles of Power System', S.Chand Publishers, Reprint Edition 2019.

6. Taub & Schiling "Principles of Communication Systems" Tata McGraw Hill 4th edition 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To be able to understand the concepts related with electrical circuits and wiring practices.
CO2	To be able to study the different three phase connections and the concepts of magnetic circuits.
CO3	To be able to understand the working principle of electronic devices such as diode and zener diode.
CO4	To be able to understand the characteristics and working of current controlled and voltage controlled devices.

CO5 | To be able to understand the basic concepts of communication systems.

Course Outcomes		Program Outcomes I											-	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	2	3	3	2	1	3	2	2	3	3	2	2		
CO2	3	3	3	2	2	1	3	1	1	2	2	2	3	2	2		
CO3	3	3	3	2	2	1	2	1	1	1	2	3	3	2	2		
CO4	3	3	3	2	1	2	2	1	1	1	1	2	3	2	2		
C05	3	2	1	2	1	1	2	1	1	1	1	2	3	2	2		

MAPPING OF COs WITH POs AND PSOs

GE 1207	ENGINEERING PRACTICES LABORATORY	L	Р	Т	С
	(Common for all branches of B.E. / B. Tech Programmes)	0	0	4	2

Objectives

•To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering

LIST OF EXPERIMENTS

GROUP A (CIVIL & MECHANICAL) PRACTICE 13

CIVIL ENGINEERING PRACTICE

Buildings:

(a)Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

	(a)Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers elbows in household fittings.
	(b)Study of pipe connections requirements for pumps and turbines.
	(c)Preparation of plumbing line sketches for water supply and sewage works.
	(d)Hands-on-exercise:
	Basic pipe connections - Mixed pipe material connection - Pipe connections wit
	different joining components.
	(e)Demonstration of plumbing requirements of high-rise buildings.
	Carpentry using Power Tools only:
	(a)Study of the joints in roofs, doors, windows and furniture.
	(b)Hands-on-exercise:
	Wood work, joints by sawing, planing and cutting.
II	MECHANICAL ENGINEERING PRACTICE 18
	Welding:
	(a)Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
	(b)Gas welding practice
	Basic Machining:
	(a)Simple Turning and Taper turning
	(b)Drilling Practice
	Sheet Metal Work:
	(a)Forming & Bending:
	(b)Model making – Trays and funnels.
	(c)Different type of joints.
	Machine assembly practice:
	(a)Study of centrifugal pump
	(b)Study of air conditioner
	Demonstration on:
	(a) Smithy operations, upsetting, swaging, setting down and bending. Example
	Exercise – Production of hexagonal headed bolt.
	(b)Foundry operations like mould preparation for gear and step cone pulley.
(c)I	Fitting – Exercises – Preparation of square fitting and V – fitting models.
	GROUP B (ELECTRICAL & ELECTRONICS)

IV ELECTRONICS ENGINEERING PRACTICE 16 signal parameter (peak-peak, rms period, frequency) using CR. Study of logic gates AND, OR, EX-OR and NOT. Generation of Clock Signal. Soldering practice - Components Devices and Circuits - Using general purpose PCB. Measurement of ripple factor of HWR and FWR. LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS S.No. **Description of Equipment CIVIL** Assorted components for plumbing consisting of metallic pipes, plastic pipes, 1. flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) 2. 3. Standard woodworking tools 15 Sets. 4. Models of industrial trusses, door joints, furniture joints **Power Tools:** (a) Rotary Hammer (b) Demolition Hammer 5. (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw MECHANICAL Arc welding transformer with cables and holders. 1. Welding booth with exhaust facility. 2. 3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. Centre lathe. 5.

1. Study of electronic components and equipment's – Resistor, colour coding measurement of AC

Residential house wiring using switches, fuse, indicator, lamp and energy meter.

Measurement of electrical quantities - voltage, current, power & power factor in RLC circuit.

- 2.
- 3.

Measurement of energy using single phase energy meter.

Measurement of resistance to earth of an electrical equipment.

TOTAL: 60 PERIODS

Quantity

required

15 sets

15 Nos

15 Sets.

5 each

2 Nos

5 Nos

5 Nos

5 Sets

2 Nos

2 Nos

ELECTRICAL ENGINEERING PRACTICE

Fluorescent lamp wiring.

Stair case wiring

Ш

1. 2.

3. 4.

5.

6.

CC		3	1	3	0	0	3	0	0	0	0	0	3	3	2	3		
Guite	011162	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3		
Cou Outco						Prog	gram	Outco	omes						ram Sp utcom			
MAPP	PING (OF C	Os W	ITH	POs A	ND P	SOs											
.05	Elabo	rate c	on the	comp	onents	s, gate	s, solo	lering	pract	ices								
CO4				trical	-		a - 1											
CO3 CO4	•			$\frac{1}{1}$			orks a	nd app	oliance	es.								
CO2											ls usin	ng she	et met	al worl	KS			
cor	equip	ment'	's to jo	oin the	e struc	tures.												
										ns inc	luding	g plum	bing	works.	Use we	elding		
COUR Upon (se sti	idente	s will	he ah	le to									
				<u>a</u>														
5.	Study	y pur	pose i	tems:	Telep	hone,	FM r	adio, I	low-v	oltage	powe	er supp	oly		1 ea	ach		
4.	Multi													10 Nos.				
3.	Small	PCB	s.												10	10 Nos.		
2.	Assor	ted el	ectror	nic con	npone	ents fo	or mak	ting ci	ircuits	50 N	os.				50	50 Nos.		
1.	Solde	ring g	guns 1	0 Nos	•										10	Nos.		
							ELE	CTR	ONIC	S					I			
	• •	0		wire d	etecto	or									21	105		
5.	Powe $(a) \mathbf{R}$		o ls: Finder												2 N	Jos		
4.	Megg			00V).											1 N	Io.		
3.					Iron l	oox, fa	an and	l regul	lator,	emerg	ency l	amp.			1 e	ach		
2.				ring in											10	Sets		
1.	Assor	ted el	ectric	al con	npone	nts for	r hous	e wiri	ng.						15	Sets		
L							ELI	ECTR	RICAI	_					I			
9.	Study	y-pur	pose i	tems:	centr	ifugal	pump	, air-c	condit	ioner.					1 e	ach		
8.	Powe	r Too	l: Ang	gle Gri	inder.										2 N	los		
7.	Moul	ding t	able, i	found	ry too	ls.									2 S	ets		
6.	Heart	h furr	nace, a	invil a	nd sm	hithy to	ools.								2 S	ets		

CO3	3	1	2	0	0	2	0	0	0	0	0	3	3	2	3
CO4	3	2	3	3	1	3	1	1	1	1	2	3	3	3	3
C05	3	2	3	3	1	2	1	1	1	1	2	3	3	3	3

EE1278	PRINCIPLES OF ELECTRICAL AND ELECTRONIC DEVICES LABORATORY	L	Τ	Р	C
	(Common to EEE & EIE)	0	0	4	2
Objectives			1		
•To provi	de practical knowledge of fundamental concepts of electrical and elect	ronics	engi	ineer	ring
throug	h relevant experiments.				
•To impai	t hands on experience in measurement of electric and magnetic circuit p	parame	ters.		
•To train	the students in performing the verification of ohm's law and Kirchhoff's	s laws.			
•To analy	se various connections of balanced and unbalanced loads.				
•To study	the characteristics of electronic semiconductor devices.				
LIST OF EX	PERIMENTS				
1. Measureme	ent of equivalent Resistance in an electric circuit				
2. Verification	n of ohm's law.				
3. Verification	n of Kirchhoff's laws.				
4. Measureme	ent of magnetic flux in magnetic circuits.				
	Ita connections with balanced and unbalanced loads.				
6. V-I charact	eristics of PN junction and Zener Diode.				
	eristics of SCR.				
8. V-I charact	eristics of BJT (CE, CB, CC Configuration).				
	eristics of FET.				
10. V-I charac	cteristics of UJT and its application.				
	ΤΟΤΑ	AL:60) PE	RIC	D
LIST OF EQ	UIPMENT FOR A BATCH OF 30 STUDENTS				
1.Dual,(0-	30V) variability Power Supply- 10 Nos				
2.CRO-10	Nos-30MHz				
3.Function	a Generator – 10 Nos- 1 MHz				
4.Digital N	Multimeter -10 Nos				
5.Bread bo	pard – 10 Nos				
6.Digital 7	Frainer Kit				
7.Watt me	ter-2Nos.				
8.Ammete	er (0-10A)-10 Nos				
9.Voltmet	er (0-300V)-10Nos				
	eter-2 Nos				

(C O4	3 3 3 3 3 1 1 1 2 1 2 2 3 2 2															
(C O 3	3	3	3	3	3	1	2	1	2	1	2	2	3	2	2	
(C O 2	3	3	3	3	3	2	1	1	2	1	1	3	3	2	2	
(C O 1	3	3	3	3	3	1	1	1	2	1	2	2	3	2	2	
	COMES	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
	ourse tcomes					Prog	gram	Outco	omes					0	utcom		
G								0 1						Prog	ram Sj	oecific	
		-		MA	PPIN	IG OI	F COs	s WIT	TH PC)s AN	D PS	Os					
CO5	To stud	y and	analy	se the	chara	cteris	tics of	vario	us ele	ctroni	c sem	icond	uctor	device	s.		
CO4	Ability	to Des	sign a	nd cor	nstruc	t basio	c load	conne	ection	s of el	ectric	al net	works	5			
CO3	Design circuit.	and A	nalys	e the t	Dasic C	circuit	comp	onent	ts and	conne	ect the	m to	make	a real e	electric	al	
CO2			amiliar with the basic ohm's and kirchhoff's law realization.														
CO1	-		e simple electric and magnetic circuits.														
-	complet	etion of the course, students will be able to															
			COMES n of the course, students will be able to														
			6. FE	T													
			5. Ze	ner D	iode.												
			4. Di	-													
			2. BJ 3. UJ														
				sistor													
	Consuma			-		y											
11	.Load Re	sistor	Box-	lNos.													

C05

SEMESTER III

N#A 1201	TRANSFORM AND PARTIAL DIFFERENTIAL	т	т	р	C
MA1301	EQUATIONS	L	Т	Р	С
(Common to Civil, EEE, EIE, Mech and Biotech)	4	0	0	4
Objectives					
	basic concepts of Partial differential equation and to find its solutions	3.			
	urier series analysis which is vital to many applications in engineering		rt fr	om	
	g boundary value problems?	, " թ."			
	student with Fourier series techniques to solve heat and wave flow pro-	obler	ns iı	1	
engineering.	1				
0 0	ne student with Fourier transform techniques used in solving various p	racti	cal		
engineering prol	· · · ·				
• To introduce the	e effective mathematical tools for the solutions of partial differential ec	quati	ons	that	
model several pl	hysical processes and to develop transform techniques for discrete tim	e sys	stem	s.	
UNIT - I	PARTIAL DIFFERENTIAL EQUATIONS			12	
	l differential equations – Singular integrals – Solutions of standard				
order partial differ	ential equations (except $f(x^m z^k p, y^n z^k q) = 0$) – Lagrange's line	ar e	quat	ion	—
Linear partial diffe	rential equations of second and higher order with constant coeffic	cient	s of	bo	th
homogeneous and n	on-homogeneous types.				
UNIT - II	FOURIER SERIES			12	2
	ns -Necessary and sufficient condition for existence of Fourier ser				
	d and even functions - Half range sine series -Half range cosine series	es –	Co	mple	ex
form of Fourier seri	es – Parseval's identity – Harmonic analysis.				
	1			1	
UNIT - III	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION			12	
	DE – Method of separation of variables – Fourier Series Solu				
	equation – One dimensional equation of heat conduction – Steady sta	ate s	olut	ion	of
two dimensional eq	uation of heat conduction.				
UNIT - IV	FOURIER TRANSFORMS			1	2
	r integral theorem – Fourier transform pair – Fourier sine and Cosing	a tra	nsfo		
	orms of simple functions – Convolution theorem – Parseval's identity.	e ua	11510	11115	_
	sins of simple functions – convolution theorem – farseval s identity.				
UNIT - V	Z – TRANSFORMS AND DIFFERENCE EQUATIONS			1	2
	mentary properties – Inverse Z-transform (using partial fraction ar	nd re	esidu	1	
	the theorems – Convolution theorem – Formation of difference equation			,	
	ons using $Z - transform$.	~			-
	<u> </u>				
	Total P	•		60	

Text Books:

- 1. Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014.
- 2. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley, India, 2016.

Reference Books:

CO5

- 1. Andrews, L.C and Shivamoggi, B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.
- 3. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

C	rse Outcomes (CO)																	
CO1	Under			to sol	lve th	e part	tial di	fferer	ntial e	quation	ons ai	nd app	ply the	ese co	ncepts	s in th	ne fiel	ld
	of eng		<u> </u>															
CO2	Learn					-		-	-				-	-		of el	ectric	al
	engine	ering	, vibr	ation	analy	sis, a	coust	ics, oj	ptics,	signa	l and	image	e proc	essing	•			
CO3	Appre		-	-		-						-						
	Dimer	isiona	al hea	t flov	w pro	blem	s and	l one	dime	ensior	nal w	ave e	quatio	ns an	d this	s con	cept	is
	applie	d in t	he fie	elds li	ike el	astici	ty, he	eat tra	nsfer	,quai	ntum	mech	anics	and a	lso ex	tensi	vely i	in
	physic																	
CO4	Under	Understand the mathematical principles on transforms and gain the ability to formulate and																
	solve s	solve some of the physical problems like designing electrical circuits, signal processing, signal																
	analysis ,image processing etc.																	
CO5	Learn to use the effective mathematical tools like Z- transform for the solving difference																	
	equati	equations in discrete time signals																
	MAPI	PING	COU	JRSE	COU'	ΓΟΟΙ	MES	WIT	H PR	OGR	RAM	ME O	OUTC	OME	S			
~						D		04-						Pro	gram	Spec	cific	
	urse					Prog	gram	Oute	omes						Outc	omes		
Outo	comes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	4	
С	01	3	3	2	2	1	1	2	0	2	1	2	0	3	1	1	1	
С	02	3	3	2	2	1	2	1	0	1	0	2	0	3	2	1	2	
C	CO3 3 3 2 2 0 1 0 0 1 0 2 0 3 1 1 1																	
C	04	3	2	1	2	1	0	1	1	0	0	3	0	2	2	2	2	

EI1	301	ELECTRICAL AND ELECTRONIC MEASUREMENTS	L	Т	Р	C
			3	0	0	3
COUR	SE OB	JECTIVES				
•	-	vide knowledge in the specific area of electrical measuring instrume				
		isis is laid on the meters used to measure current, voltage, power and				
•		ate discussion about potentiometer and to impart knowledge on varie	ous in	strum	ent	
		rmers and to understand the calibration of various meters.				
•		ate study about various resistance and impedance measurement techn	nique	S		
•	In-dep	th understanding and idea of analog and digital instruments				
•		ed study of display and recording devices				
Unit-I]	MEASUREMENT OF BASIC ELECTRICAL PARAMETERS				9
Galvan	ometers	s – D'Arsonval galvanometer – Theory, application – Principle, cons	tructio	on, op	eratic	n o
noving	g coil, r	noving iron meters, Electrodynamometer & induction type - Ext	tensio	n of	range	and
alibra	tion of v	oltmeter and ammeter – Errors and compensation Electrodynamom	eter ty	pe w	attme	ter -
Theory	v & its e	rrors – Methods of correction – LPF wattmeter– Induction type ener	rgy m	eter –	- Phar	ton
oading						
J nit-I		POTENTIOMETERS, INSTRUMENT TRANSFORMERS				9
DC pot	tentiom	eter – Basic circuit, standardization – Laboratory type (Crompton's)) – A0	C pote	ention	nete
Drys	dale (po	olar type) type - Gall-Tinsley (coordinate) type - Limitations & ap	pplica	tions	– Cui	ren
Transfo	ormer an	nd Potential Transformer construction, theory, operation, phasor diag	oram	charg	octeris	tics
			gram,	Charc		
esting,		limination – Applications.	gram,	chara		
esting,		• • •	grann,	chara		
	, error e	• • •				9
U nit-I l	, error e	limination – Applications.				9
U nit-II Measu Kelvin	, error e II rement o double	limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measurement	Whea	atstone ent –	e brid Megg	9 ge - ger -
U nit-II Measur Kelvin Direct	, error e II 2 rement o double deflectio	limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br	Whea	ntstone ent – – Mea	e brid Megg asurer	9 ge - er - nen
Unit-II Measur Kelvin Direct	error e	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge	Whea	ntstone ent – – Mea	e brid Megg asurer	9 ge - er - nen
Unit-II Measur Kelvin Direct	error e	limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br	Whea	ntstone ent – – Mea	e brid Megg asurer	9 ge - er - nen
U nit-II Measur Kelvin Direct of indu Wein's	error e	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance.	Whea	ntstone ent – – Mea	e brid Megg asurer	9 ge - ger - nen ge -
Unit-II Measur Kelvin Direct of indu Wein's Unit-I	error end II I rement of double deflection octance, bridge	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure con methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance.	Whea ureme ridges	ntstone ent – – Mes hering	e brid Megg asurer g brid	9 ge - nen ge - 9
Unit-II Measur Celvin Direct of indu Wein's Unit-I Digital	, error e II rement o double deflectio actance, s bridge V voltme	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro-	Whea ureme ridges – Scl	ntston ent – – Mea hering r base	e brid Megg asurer g brid d DM	9 ge - er - men ge - 9 IM
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Dscilla	i error el i rement o double deflection ictance, s bridge V voltme itors –	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprow Wien's bridge, RC phase shift, Hartley, Crystal oscillators –	Whea ureme ridges – Scl	ntstone ent – – Mes hering r base 1 and	e brid Megg asurer g brid d DM	ge - er - nen ge - 9 IM
J nit-II Measur Celvin Direct of indu Wein's J nit-I Digital Dscilla	II I rement of double deflection	Limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure capacitance – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprov Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer -	Whea ureme ridges – Scl	ntstone ent – – Mes hering r base 1 and	e brid Megg asurer g brid d DM	ge - er - men ge - 9 IM
Unit-II Measur Xelvin Direct of indu Wein's Unit-I Digital Dscilla generat	II I rement of double deflection	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprow Wien's bridge, RC phase shift, Hartley, Crystal oscillators –	Whea ureme ridges – Scl	ntstone ent – – Mes hering r base 1 and	e brid Megg asurer g brid d DM	ge - er - nen ge - 9 IM
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Digital Dscilla generat	error end in the second secon	Limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications	Whea ureme ridges – Scl cessor Signa Harm	ntstone ent – – Mes hering r base 1 and	e brid Megg asurer g brid d DM	9 ge - er - nen ge - 9 IM ction
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Digital Dscilla generat	rement of double deflection defle	Limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure con methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications	Whea ureme ridges – Scl cessor Signa Harm	ntstone ent – – Mes hering r base 1 and	e brid Megg asurer g brid d DM	9 ge - er - nen ge - 9 IM ttion ttion
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Oscilla generat analyze Unit-V	, error e	Limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications	Whea ureme ridges – Scl cessor Signa Harn	atstone ent – – Mea hering r base 1 and nonic	e brid Megg asurer g brid d DM func distor	9 ge - er - nen ge - 9 IM ettion 9
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Oscilla generat analyze Unit-V Cathod	error end rement of double deflection deflection ictance, bridge V voltme tors – p er – Spe	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND TELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI	Whea ureme ridges – Scl cessor Signa Harm	ntstone ent – – Mea hering r base 1 and nonic	e brid Megg asurer g brid d DM func distor	9 ge - er - men ge - 9 IM ettion ttion 9
Unit-II Measur Xelvin Direct of indu Wein's Unit-I Digital Dscilla generat analyze Unit-V Cathod ecorde	i error el rement o double deflectio actance, s bridge V voltme tors – p er – Spe	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI genetic tape recorders — Data Loggers – Introduction to Virtual Instru	Whea ureme ridges – Scl cessor Signa Harm	ntstone ent – – Mea hering r base 1 and nonic	e brid Megg asurer g brid d DM func distor	9 ge - er - men ge - 9 IM ettion ttion 9
Unit-II Measur Xelvin Direct of indu Wein's Unit-I Digital Dscilla generat analyze Unit-V Cathod ecorde	i error el rement o double deflectio actance, s bridge V voltme tors – p er – Spe	Imination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C bric capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprov Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI acquisition – General Telemetry system – various types.	Whea ureme ridges – Scl cessor Signa Harm D disp rumer	atstone ent – – Mea hering r base 1 and nonic - lays – ntation	e brid Megg asurer g brid d DM func distor - X-Y n – blo	9 ge - er - nen ge - 9 IM etion ttion 9 9
Unit-II Measur Xelvin Direct of indu Wein's Unit-IY Digital Dscilla generat unalyze Unit-V Cathod recorde liagrar	error el rement o double deflection ictance, bridge V voltme tors – p er – Spe v le ray os ers – Ma n - Data	Itimination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprov Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI aquisition – General Telemetry system – various types. TOT	Whea ureme ridges – Scl cessor Signa Harm	atstone ent – – Mea hering r base 1 and nonic - lays – ntation	e brid Megg asurer g brid d DM func distor - X-Y n – blo	9 ge - er - nen ge - 9 IM etion ttion 9 9
Unit-II Measur Xelvin Direct of indu Wein's Unit-I Digital Dscilla generat unalyze Unit-V Cathod recorde liagrar	error end rement of double deflection double deflection	Itimination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C bridge – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. – ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprove Wien's bridge, RC phase shift, Hartley, Crystal oscillators – Ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI on the precorders — Data Loggers – Introduction to Virtual Instrumentation - General Telemetry system – various types. TOT TOT	Whea ureme ridges – Scl cessor Signa Harm D disp rumer	atstone ent – – Mea hering r base 1 and nonic - lays – ntation	e brid Megg asurer g brid d DM func distor - X-Y n – blo	9 ge - er - nen ge - 9 IM etion ttion 9 Sock
Unit-II Measur Kelvin Direct of indu Wein's Unit-I Digital Oscilla generat analyze Unit-V Cathod recorde diagrar	error end rement of double deflection ictance, bridge V voltme itors – por tors – por tors – por tors – por er – Spe ver – Ma n – Data SE OU end of t	Itimination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C bridge apacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. – ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprov Wien's bridge, RC phase shift, Hartley, Crystal oscillators – – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI ognetic tape recorders — Data Loggers – Introduction to Virtual Instrumenter and the student should have the: TOT	Whea ureme ridges – Scl cessor Signa Harn D disp rumer	atstone ent – – Mea hering r base 1 and nonic - lays – ntation	e brid Megg asurer g brid d DM func distor - X-Y n – blo RIOI	9 ge - er - nen ge - 9 IM ettion ttion 9 ock
Unit-II Measur Kelvin Direct of indu Wein's Unit-IY Digital Dscilla generat analyze Unit-V Cathod recorde liagrar	error end rement of double deflection double deflection	Itimination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C bridge apacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprovide wire solves bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI ignetic tape recorders — Data Loggers – Introduction to Virtual Instruction – General Telemetry system – various types. TOT TCOMES he course, the student should have the: lity to compare the working principles, merits, demerits and errors or	Whea ureme ridges – Scl cessor Signa Harm D disp rumer	ntstone ent – – Mea hering r base 1 and nonic - hand nonic - hays – ntation IS PE	e brid Megg asurer g brid d DM func distor - X-Y n – blo RIOI	9 ge - er - nen ge - 9 IM ettion ttion 9 ock
Unit-II Measur Kelvin Direct of indu Wein's Unit-IV Digital Oscilla generat analyze Unit-V Cathod recorde diagram	error end rement of double deflection double deflection	Limination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C br capacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Micropro Wien's bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI gnetic tape recorders — Data Loggers – Introduction to Virtual Inst. acquisition – General Telemetry system – various types. TOT TCOMES he course, the student should have the: lity to compare the working principles, merits, demerits and errors o cal instruments and can understand about different instruments that a	Whea ureme ridges – Scl cessor Signa Harm D disp rumer	ntstone ent – – Mea hering r base 1 and nonic - hand nonic - hays – ntation IS PE	e brid Megg asurer g brid d DM func distor - X-Y n – blo RIOI	9 ge - er - nen ge - 9 IM ettion ttion 9 ock
Unit-II Measur Kelvin Direct of indu Wein's Unit-IV Digital Oscilla generat analyze Unit-V Cathod recorde diagram	error end rement of double deflection deflec	Itimination – Applications. RESISTANCE AND IMPEDANCE MEASUREMENT of low, medium & high resistance – Ammeter, voltmeter method – bridge – Series and shunt type ohmmeter –High resistance measure on methods – guard wire method – Loss of charge method – A.C bridge apacitance – Maxwell Bridge – Anderson bridge – Hay's bridge – Campbell bridge to measure mutual inductance. ANALOG AND DIGITAL INSTRUMENTS ter- various types, true RMS voltmeter and multi-meter – Microprovide wire solves bridge, RC phase shift, Hartley, Crystal oscillators – ulse and square wave generator – Applications –wave analyzer - ctrum analyzer – Applications DISPLAY DEVICES, VIRTUAL INSTRUMENTATION AND FELEMETRY cilloscope: Classification, Sampling and storage scopes – LED, LCI ignetic tape recorders — Data Loggers – Introduction to Virtual Instruction – General Telemetry system – various types. TOT TCOMES he course, the student should have the: lity to compare the working principles, merits, demerits and errors or	Whea ureme ridges – Scl cessor Signa Harn D disp rumer AL : 4	atstone ent – – Mea hering r base 1 and nonic elays – ntation IS PE erent t	e brid Megg asurer g brid d DM func distor - X-Y n – blo RIOI	9 ge - er - nen ge - 9 IM ettion ttion 9 Sock 05

		values of resistance, capacitance and inductance
quantities. CO4 Able to understand the principle of various display devices, virtual instrumentation and telemetry. CO5 Able to apply the principles and practices for instrument design and development to real work	CO3	An ability to apply knowledge of electronic instrumentation for measurement of electrical
telemetry. CO5 Able to apply the principles and practices for instrument design and development to real work	005	quantities.
telemetry. CO5 Able to apply the principles and practices for instrument design and development to real we	CO4	Able to understand the principle of various display devices, virtual instrumentation and
	04	telemetry.
problems.	CO5	Able to apply the principles and practices for instrument design and development to real world
proof this.	005	problems.

TEXT BOOKS

1. Kalsi, H.S., "Electronic Instrumentation", Tata McGraw-Hill, New Delhi, 2010

2. Sawhney, A.K., "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai and Co., New Delhi, 2010

REFERENCES

- 1. Northrop, R.B., "Introduction to Instrumentation and Measurements", Taylor & Francis, New Delhi, 2008.
- 2. Carr, J.J., "Elements of Electronic Instrumentation and Measurement", Pearson Education India, New Delhi, 2011.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	ram	Outc	omes					-	ram Sp Jutcome	
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
CO2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
CO3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
CO5	0	0	0	0		0	0	0	0	0	0	0	0	0	0

EI1	1302	TRANSDUCERS ENGINEERING	L	Т	Р	С
			3	0	0	3
COL	URSE	OBJECTIVES				
•	Get t	b know the methods of measurement, classification of transducers and to a	naly	ze e	error	
_	To u	iderstand the behavior of transducers under static and dynamic conditions	and	hen	ce to)
•	mode	l the transducer.				
•	Get e	xposed to different types of resistive transducers and their application area	ıs.			
•	To ac	quire knowledge on capacitive and inductive transducers.				
•	To ga	in knowledge on variety of transducers and get introduced to MEMS and	Sm	art ti	ansc	ucers.
Unit	-I	SCIENCE OF MEASUREMENTS AND CLASSIFICATION OF				9
		TRANSDUCERS				
Units	s and	standards – Static calibration – Classification of errors, Limiting error and	nd p	roba	able	error -
Erro	r anal	ysis – Statistical methods – Odds and uncertainty – Classification of tran	sdu	cers	– Se	lection

of transducers.

Unit-II CHARACTERISTICS OF TRANSDUCERS

Static characteristics: - Accuracy, precision, resolution, sensitivity, linearity, span and range. Dynamic characteristics: Mathematical model of transducer, Zero, I and II order transducers, Response to impulse, step, ramp and sinusoidal inputs.

Unit-III VARIABLE RESISTANCE TRANSDUCERS

Principle of operation, construction details, characteristics and applications of potentiometer, strain gauge, resistance thermometer, Thermistor, hot-wire anemometer, piezo-resistive sensor and humidity sensor.

Unit-IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS

Inductive transducers: – Principle of operation, construction details, characteristics and applications of LVDT, Induction potentiometer – Variable reluctance transducers – Synchros – Microsyn – Principle of operation, construction details, characteristics of capacitive transducers – Different types & Signal Conditioning – Applications: - Capacitor microphone, Capacitive pressure sensor, Proximity sensor.

Unit-V OTHER TRANSDUCERS

Piezoelectric transducer – Hall Effect transducer – Magneto elastic sensor – Digital transducers – Fibre optic sensors – Thick & Thin Film sensors (Bio sensor & Chemical Sensor) – Environmental Monitoring sensors (Water Quality & Air pollution) – Introduction to MEMS – Introduction to Smart transducers and its interface standard (IEEE 1451), Introduction to Agricultural Sensors- Sensor Fusion

TOTAL: 45 PERIODS

Q

9

9

COURSE OUTCOMES

At the end of the course, the student should have the:

At the	end of the course, the student should have the.
CO1	To apply the mathematical knowledge and science & engineering fundamentals gained to solve
	problems pertaining to measurement applications
CO2	To determine the static and dynamic characteristics of transducers using software packages and
	to analyze the problems related to sensors & transducers.
CO3	To understand about the Principle and constructional details of variable resistance transducer
004	To understand about the Principle and constructional details of variable capacitive and
CO4	inductive transducers.
COF	To apply the mathematical knowledge and science & engineering fundamentals gained to solve
CO5	problems pertaining to measurement applications

TEXT BOOKS

- 3. Doebelin E.O. and Manik D.N., "Measurement Systems", 6th Edition, McGraw-Hill Education Pvt. Ltd., 2011.
- 4. Neubert H.K.P., Instrument Transducers An Introduction to their Performance and Design, Oxford University Press, Cambridge, 2003

REFERENCES

1. Bela G.Liptak, Instrument Engineers' Handbook, Process Measurement and Analysis, 4th Edition, Vol. 1, ISA/CRC Press, 2003.

- D. Patranabis, Sensors and Transducers, 2nd edition, Prentice Hall of India, 2010. E.A. 2. John P. Bentley, Principles of Measurement Systems, III Edition, Pearson Education, 2000. 3. Jacob Millman, Christos C.Halkias, 'Integrated Electronics - Analog and Digital circuits system', 4. McGraw Hill, 2003. 5. W.Bolton, Engineering Science, Elsevier Newnes, Fifth edition, 2006 Murthy, D.V.S., Transducers and Instrumentation, 2nd Edition, Prentice Hall of India Pvt. Ltd., 6.
- New Delhi, 2010.
- Ian Sinclair, Sensors and Transducers, 3rd Edition, Elsevier, 2012 7.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outo	omes					-	ram S Putcon	pecific 1es
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	2	1	1	-	-	-	-	-	-	2	3	2	2
CO2	3	3	2	2	2	-	-	-	-	-	-	2	3	2	2
CO3	3	3	2	1	1	-	-	-	-	-	-	2	3	2	2
CO4	3	3	2	1	1	-	-	-	-	-	-	2	3	2	2
CO5	2	2	2	1	1	-	-	-	-	-	-	2	3	2	2

EE1371	ELECTRIC CIRCUIT ANALYSIS	L	Τ	P	С
	Common to EEE and EIE	2	1	0	3

Objectives

- To determine the response of electric circuits using basic analysis methods.
- To impart knowledge on solving circuit equations using network theorems.
- •To Analyse the transient behaviour of electric circuits with different types of source.
- To understand the concepts of resonance and coupled circuits.
- To Compute and analyse the two-port network and its parameters.

UNIT - I **ANALYSIS OF ELECTRIC CIRCUITS & NETWORK TOPOLOGY**

Mesh Analysis - Analysis with independent and dependent voltage sources, Supermesh Analysis. Node Analysis - Analysis with independent and dependent current sources, Supernodal Analysis. Introduction to graph theory - Network terminology. Duality and dual networks.

UNIT - II NETWORK THEOREMS FOR DC AND AC CIRCUITS

Network reduction: voltage and current division, source transformation, star delta conversion. Applications of: Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem, Mill man's theorem. 9

UNIT - III | TRANSIENT RESPONSE ANALYSIS

Transient response: Natural response & Forced response of RL, RC and RLC circuits using Laplace transform for DC input and AC sinusoidal input.

UNIT - IV | RESONANCE AND COUPLED CIRCUITS

9

Series and parallel resonance: Variation of impedance with frequency - Variation in current through and voltage across L and C with frequency – Bandwidth - Q factor - Selectivity. Mutual coupled circuits: Self and mutual inductance – Coefficient of coupling – Dot Convention in coupled circuits. Ideal Transformer. Tuned circuits – single tuned circuits.

UNIT - V TWO PORT NETWORK AND NETWORK FUNCTIONS

Two Port Networks, terminal pairs, relationship of two port variables, impedance(Z) parameters, admittance(Y) parameters, transmission parameters (ABCD) and hybrid parameters(H), interconnections of two port networks.

Tot

- 1. M Nahvi I J A Edminster "Electric Circuits"; Schaum's outline series, Tata Mcgraw Hill companies, 4th Edition, 2019.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth Edition, McGraw Hill, 2020.
- 3. David A Bell," Electric circuits ", Oxford University Press, 2019.

Reference Books:

Text Books:

- 1. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 2017.
- 2. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, New Delhi, 2019.
- 3. Sudhakar. A, Shyammohan. S.P "Circuits and Networks-Analysis and Synthesis". Tata McGraw Hill publishers, 2018.
- 4. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2020.
- 5. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 2018.

Course	Outcomes (CO)
CO1	Able to Determine the response of Electric circuits using basic analysis methods and network
	topology
CO2	Able to Compute the response of electric circuits using network theorem in real time
	applications.
CO3	Able to Apply Laplace transform techniques for solving problems and discuss the complete
	response of circuits.
CO4	Able to Design and analyse resonance and coupled circuits.
CO5	Able to Evaluate and analyse two port networks and its parameters.

Course Outcomes					Prog	ram (Jutco	mes					-	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2		
CO2	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2		
CO3	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2		
CO4	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2		
C05	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2		

Total Periods:

45

EE1372

ANALOG ELECTRONICS (Common to EEE and EIE)

L Р С Т 0 0 3

9

9

9

3

Objectives

- To be familiar with the biasing of BJT and its amplifier circuits
- To analyse the operation of feedback amplifiers and oscillators •
- To study the characteristics of Op-Amp.
- To design and construct application circuits with Op-amp IC's
- To study the functional blocks and the applications of special ICs like 555, 565 and 566 and voltage regulator ICs

UNIT -**BIASING METHODS AND AMPLIFIER CIRCUITS** I

PN diode : Intrinsic and Extrinsic semiconductors - Formation of PN junction - biasing- VI characteristics of diode -BJT -Need for biasing, DC Load Line and Bias Point, Various biasing methods of BJT, BJT small signal model, Analysis of CE amplifier, Gain and Frequency response, Differential Amplifier - Common mode and Differential mode analysis - Multi-stage amplifier.

UNIT -Π

FEEDBACK AMPLIFIERS AND OSCILLATORS

Feedback Concepts, gain with feedback, effect of feedback on gain stability, distortion, bandwidth, input and output impedances. Topologies of feedback amplifiers - analysis of series-series, shunt-shunt, series-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation. Barkhausen criterion for oscillation, Types of oscillators -RC, LC and crystal oscillators.

OP-AMP CHARACTERISTICS AND ITS BASIC APPLICATIONS UNIT -

III

Basic introduction to IC fabrication. Op-Amp characteristics: DC characteristics, AC characteristics. Basic applications: Inverting, Non-inverting, Adder, Subtractor, Differential amplifier, Instrumentation amplifier, Differentiator, Integrator circuit and Comparators.

UNIT -**APPLICATIONS OF OP-AMP** IV

V to I, I to V converter, Multi-vibrators, Triangular wave generators, Precision rectifier, Clippers and Clampers, Peak detector, Sample and hold Circuit. First-order and Second order active filters, A/D converters: Flash, Dual slope and Successive Approximation type. D/A converters: Weighted resistance type and R-2R ladder type.

UNIT -SPECIAL ICS

V

555-Timer circuit, Functional block diagram, characteristics & applications, Astable and Monostable multivibrator, 566-Voltage Controlled Oscillator circuit, 565-Phase Locked Loop and its applications, IC8038-Function generator, Linear Voltage regulators: Functional Block diagram : 78XX, 79XX, LM317, IC723 general purpose regulator - SMPS.

Total Periods: 45

Text Books:

- 1. David A bell, "Electronic circuits", Oxford University Press, 2011.
- 2. D. Roy Choudhary, Sheil B. Jani, 'Linear Integrated Circuits', Fourth edition, New Age, 2012.

9

3. Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV edition, Pearson Education, 2015.

Reference Books:

- 1. Millman and Halkias, "Integrated Electronics", McGraw Hill Publications, 2008.
- 2. Muhammad H. Rashid, "Linear Integrated Circuits", Cengage Learning, 2014.
- 3. Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuits system', McGraw Hill, 2003.
- 4. Robert F.Coughlin, Fredrick F. Driscoll, 'Op-amp and Linear ICs', Pearson, 6th edition, 2012.
- 5. Fiore,"Opamps& Linear Integrated Circuits Concepts & applications", Cengage, 2010.
- 6. Floyd, Buchla,"Fundamentals of Analog Circuits, Pearson, 2013.

Course Outcomes (CO): At the end of the course students will have the,

CO1	Ability to understand the biasing concepts of BJT and its amplifier circuits.
CO2	Ability to design circuits employing amplifier and oscillator circuits.
CO3	Ability to analyse, comprehend and design of analog electronic circuits involving Op-Amp
CO4	Ability to analyse and design applications using IC741 operational amplifier.
CO5	Ability to design analog integrated circuits using 555 timer, PLL, VCO, voltage regulator
	and other special ICs.

Course			Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	3	3	3	3	3	3	3	1	1	1	3	2	2	3	3
CO2	3	3	3	3	3	1	2	1	3	1	3	2	2	3	3
CO3	3	3	3	3	3	1	2	1	3	1	3	2	2	3	3
CO4	3	3	3	3	3	1	2	1	3	1	3	2	2	3	3
CO5	3	3	3	3	3	1	2	1	3	1	3	2	2	3	3

EE1373	DIGITAL LOGIC CIRCUITS	L	Τ	Р	С
	(Common to EEE, EIE)	2	1	0	3

Objectives

•To study number systems and the performance characteristics of digital logic families like DTL, TTL, ECL and CMOS.

•To study combinational circuits and implement it.

•To design synchronous sequential circuits.

•To introduce asynchronous sequential circuits and PLDs

•To gain knowledge on VHDL coding style.

UNIT - I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming

code) - Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families -operation, characteristics of digital logic family.

UNIT - II COMBINATIONAL CIRCUITS

Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps - simplification and implementation of combinational logic: multiplexers and de multiplexers -code converters- adders-subtractors, Encoders and Decoders.

UNIT - III SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters - asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram, state reduction, state assignment.

UNIT - IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

Asynchronous sequential logic circuits-Transition stability, flow stability-race conditions, hazards &errors in digital circuits- analysis of asynchronous sequential logic circuits. Introduction to Programmability Logic Devices: PROM, PLA, PAL, CPLD-FPGA

UNIT - V VHDL

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flip flops, Multiplexers & Demultiplexers).

Total Periods:

Text Books:

1. James W. Bignel, 'Digital Electronics', Cengage learning, 5thEdition, 2007.

- 2. M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
- 3. Comer 'Digital Logic & State Machine Design', Oxford, 2012.

Reference Books:

- 1. Mandal 'Digital Electronics Principles and Application', McGraw Hill Edu, 2013.
- 2. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.
- 3. Thomas L. Floyd, 'Digital Fundamentals', 11th edition, Pearson Education, 2015.
- 4. Charles H. Roth, Jr, Lizy Lizy Kurian John, 'Digital System Design using VHDL, Cengage, 2013.
- 5. D.P.Kothari, J.S.Dhillon, 'Digital circuits and Design', Pearson Education, 2016.

Course	e Outcomes (CO) : At the end of the course students will have the,
CO1	Ability to compare the performance characteristics of various digital logic families like DTL,
	TTL, ECL, CMOS.
CO2	Ability to design and implement digital circuits using combinational circuits.
CO3	Ability to design sequential circuits
CO4	Ability to design asynchronous sequential circuits and PLDs
CO5	Ability to simulate using software package for development of real time logic circuits.

9

9

9

9

Course		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	1	3	2	-	-	-	-	-	-	-	-	1	3	-	-			
CO2	1	3	2	-	-	-	1	-	-	-	-	1	3	-	-			
CO3	3	2	1	_	-	-	1	-	-	-	-	1	3	-	-			
CO4	3	2	1	-	-	-	1	-	-	-	-	1	3	-	-			
CO5	1	3	2	-	1	-	1	-	-	-	-	1	2	1	-			

L

0

Т

0

Р

С

2

EE1391 ANALOG AND DIGITAL ELECTRONICS LABORATORY

Objectives

- To be exposed to the operation and application of electronic devices and their circuits
- To analyze operation using Op-amp IC's.
- To design and construct application circuits with ICs as Op-amp, 555, etc.
- To learn design, testing and characterizing of circuit behaviour with digital ICs
- To impart the analysis of sequential and combinational circuit.

LIST OF EXPERIMENTS

- 1. Frequency response of CE Amplifier.
- 2. Design of an Oscillator- RC and LC oscillator using BJT.
- 3. Applications of Op-Amp: inverting, non-inverting amplifier, Adder, Comparator and differential amplifier
- 4. Design of Integrator, Differentiator, Clipper and Clamper
- 5. IC 555 Timer applications Astable and Monostable operation
- 6. Design of Linear Voltage regulator
- 7. Implementation of Boolean Functions, Adder/ Subtractor circuits.
- 8. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
- 9. Encoders and Decoders
- 10. Counters: Design and implementation of 4-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 11. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.
- 12. Implementation of multiplexer and demultiplexer.

	Total Periods:	60
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:		
1. Dual (0-30V) variability Power Supply- 10 Nos		
2. CRO-10 Nos-30MHz		
3. Function Generator – 10 Nos 1 MHz		
4. Digital Multimeter -10 Nos		
5. IC Tester (Analog)- 2 Nos		
6. Bread board – 10 Nos		
7. Digital Trainer Kit		
Consumables Sufficient Quantity		
1. IC 741/ IC NE555		

2. Digita	al IC types									
3. LM3	3. LM317									
4. Trans	4. Transistor – 2N3391, BC107, BC147									
5. Diode	5. Diodes - IN4001, BY126									
6. DIB,	DCB									
7. Capa	7. Capacitor									
8. Resis	8. Resistors 1/4 Watt Assorted									
9. Singl	e Strand Wire									
10.Pote	ntiometer 10K									
11.Step	Down Transformer -230V to 12 V									
12.Rect	ifier IC W10									
Course	Outcomes (CO)									
CO1	Ability to understand the operation and application of electronic devices and their circuits.									
CO2	Ability to analyse, comprehend and design of analog electronic circuits involving OP-AMP									
CO3	Ability to analyse, comprehend and design of analog electronic circuits involving timer 555									
CO4	Ability to learn, design, test and analyse digital ICs									

CO5	Ability to analyse the sequential and combinational circu	iit
-----	---	-----

Course					Prog	ram	Outc	omes					_	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3		
CO1	3	3	3	3	3	3	3	1	3	1	3	1	2	3	3		
CO2	3	3	3	3	3	2	2	1	3	1	3	1	2	3	3		
CO3	3	3	3	3	3	2	2	1	3	1	3	1	2	3	3		
CO4	3	3	3	3	3	2	2	1	3	1	3	1	2	3	3		
CO5	3	3	3	3	3	2	2	1	3	1	3	1	2	3	3		

EI1308	ELECTRICAL AND ELECTRONICS	L	Т	Р	С
	MEASUREMENT LABORATORY				
		0	0	4	2
COUDCE					

COURSE OBJECTIVES Simulate, understand and experimentally verify the electric circuit laws

- Simulate, identify network theorems and their application to network reduction techniques
- To be familiar with the structure of basic electronic devices
- To be exposed to the operation and application of electronic devices and their circuits
- To analyze circuit characteristics with signal analysis using Op-amp Ics.

S. NO	LIST OF EXPERIMENTS
1.	Simulation and experimental verification of electrical circuit problems using Thevenin's and
	Norton's theorem.
2.	Simulation and experimental verification of electrical circuit problems using Superposition
	theorem.
3.	Simulation and experimental verification of Maximum Power transfer Theorem.
4.	Study of CRO and measurement of sinusoidal voltage, frequency and power factor

5.	Si	nulati	on and	l Exne	rimen	tal val	idatio	n of R	C and	RIC	electri	c circi	uit trar	nsients		
	6. Design and Simulation of series and parallel resonance circuit.															
7.	Displacement versus output voltage characteristics of a potentiometric transducer.															
8.		Wheatstone and Kelvin's bridge for measurement of resistance.														
9.		Schering Bridge for capacitance measurement and Anderson Bridge for inductance														
	measurement.															
10.	Calibration of Ammeter and Voltmeter using Shunt type potentiometer.															
11.			on of	0												
12.	Ca	librati	on of	Single	-phase	e Ener	gy me	ter								
												T	OTA	L :60]	PERIC	DS
				LIST	OF E	OUIP	MEN	T FOI	RAB	ATCI	HOF	30 ST	UDEN	NTS		
1.	Re	gulate				-										
2.		Regulated Power Supply: 0 – 15 V D.C - 10 Nos / Distributed Power Source.Function Generator (1 MHz) - 10 Nos.														
3.						,										
4.	Os	Single Phase Energy Meter - 1 No. Oscilloscope (20 MHz) - 10 Nos.														
5.																
6.		Digital Storage Oscilloscope (20 MHz) – 1 No. 10 Nos. of PC with Circuit Simulation Software (min 10 Users) (e-Sim / Scilab/ Pspice /														
			B /oth										(1.0			
7.			- Voltı					ters (1	0 Nos	.) and	Multi	-meter	rs (10	Nos.)		
8. 9.	8. Single Phase Wattmeter – 3 Nos.															
9.		Decade Resistance Box, Decade Inductance Box, Decade Capacitance Box - 6 Nos each. Circuit Connection Boards - 10 Nos.														
		Necessary Quantities of Resistors, Inductors, Capacitors of various capacities (Quarter Watt														
		10 Wa	• -		, 01 10	515001	, 111ac		Cupu	011015	or var		apuore		*41.001 *	, all
C	COUR	SE OU	UTCO	MES												
A	t the e	nd of	the co	urse, t	he stu	dent s	hould	have t	he:							
CO1	Abili	ty to u	nderst	and a	nd sim	ulate	the ele	etric c	circuit	laws						
CO2	Abili	ty to	under	stand	and s	imula	te the	netwo	ork th	eorem	is and	their	appli	cation	to ne	twork
002	reduc	tion te	echniq	ues												
CO3	Abili	ty to u	nderst	and th	ne stru	cture a	and un	derlyi	ng ser	nicond	luctor	physic	es con	cepts.		
CO4	Abili	ty to d	lesign	circui	ts emp	oloying	g elect	ronic o	device	s.						
CO5	Anal	yze, co	omprel	hend a	nd des	sign o	f analo	og elec	tronic	circui	its inv	olving	OP-A	AMP		
N	IAPP	ING C	COUR	SE O	UTCO	OMES	WIT	H PR	OGR	AMM	E OU	TCOM	MES	-		
Cou	rse					Pro	gram	Outco	mes					-		pecific
Outco						110	51 4111	Outeo	mes					0	Outcom	es
Outer	JIICS	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CC	01	2	-	1	1	2	-	-	-	-	-	-	-	2	1	-
CC)2	2	-	1	1	2	-	-	-	-	-	-	-	2	1	-
CC)3	2	-	1	1	2	-	-	-	-	-	-	-	2	1	-
CC	04	2	-	1	1	2	-	-	-	-	-	-	-	2	1	-
CC)5	2	-	1	1	2	-	-	-	-	-	-	-	2	1	-

SEMESTER IV

MA1401	STATISTICS AND NUMERICAL METHODS	L	Т	P	С
	(Common to MECH, EEE & EIE)	4	0	0	4
Objectives					
• This course a	ims at providing the necessary basic concepts of a few statistical and n	umer	ical		
methods and	give procedures for solving numerically different kinds of problems oc	curri	ng ir	1	
engineering a	nd technology.				
• To acquaint t	he knowledge of testing of hypothesis for small and large samples which	ch pla	ays a	n	
important rol	e in real life problems.				
• To introduce	the basic concepts of solving algebraic and transcendental equations.				
• To introduce	the Interpolation operators and numerical techniques of interpolation in	n var	ious		
intervals, nur	nerical techniques of differentiation and integration which plays an imp	porta	nt rol	le i	in
engineering a	and technology disciplines.				
• To acquaint t	he knowledge of various techniques and methods of solving ordinary d	liffer	entia	1	
equations.					
UNIT – I	TESTING OF HYPOTHESIS				12
	utions - Estimation of parameters - Statistical hypothesis - Large samp	le tec	te ha		
	ion for single mean and difference of means -Tests based on t, C				
	mean, variance and proportion - Contingency table (test for independent	-			
fit	mean, variance and proportion Contingency dote (lest for independen	iii) C	Joodi	ne	35 01
110					
UNIT – II	DESIGN OF EXPERIMENTS				12
	o-way classifications - Completely randomized design – Randomized	i blo	ck de	esi	
	gn - 2^2 factorial design.				0
UNIT – III	SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEM	S			12
Solution of algel	praic and transcendental equations - Fixed point iteration method – N	Jewto	on Ra	ap	hson
method - Solutio	n of linear system of equations - Gauss elimination method – Pivoting	g - G	auss	Jo	rdan
	ve methods of Gauss Jacobi and Gauss Seidel – Eigen values of a n				
method.	_		-		
UNIT – IV	INTERPOLATION, NUMERICAL DIFFERENTIATION AND				12
	NUMERICAL INTEGRATION				
	rators (Forward, Backward, shifting operators and its Properties) N				
	difference interpolation for equal intervals – Lagrange's and Ne				
-	polations for unequal intervals - Approximation of derivates usin	-	-		
polynomials – N	umerical single and double integrations using Trapezoidal and Simpson	<u>n's 1/</u>	3 rul	es	<u>•</u>
$\mathbf{UNIT} - \mathbf{V}$	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL				12
F' '4 1'60	EQUATIONS	1 1		<u> </u>	1
	methods for solving second order two - point linear boundary value				
	aylor's series method - Euler's method - Modified Euler's method				
-	thod for solving first order equations - Multi step methods: Milne's an	IU AO	Jams	;-]	Dasii
Torui predictor co	prrector methods for solving first order equations.				
	Total P	aria	le.		60
		CINC	19.		00

Text Books:

1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science ", 10th Edition,

Khanna Publishers, New Delhi, 2015.

2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

Reference Books:

CO5

3

3

2

1

2

1

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Sankara Rao. K., "Numerical Methods for Scientists and Engineers", Prentice Hall of India Pvt. Ltd, 3rd Edition, New Delhi, 2007.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and scientists" 8th edition, Pearson Education, Asia, 2007.

Course	e Outco	mes	(CO)														
CO1	Students will gain knowledge on Large Samples and Small Samples. These concepts are very useful in Biological, Electric power management, Social experiments and also in all kinds of generalizations based on information about a smaller sample and larger samples. Apply the appropriate test in the problems related with sampling.																
CO2																	
CO3									alytica								
CO4 CO5	Studen repres interpo experi require The te Studen engine second	nts v entatio olatio menta ed. T echniq nts ge eering d orde is a	vill 1 on us n met al dat he lea <u>ues a</u> et an g prob er diff	sing i hods ta mu arners re use insig insig ilems ferent 1 in	nterp are e are i are i <u>eful w</u> ht on Stud ial ec spec	olatio xtens: usec introd <u>then t</u> ordi lents juatio	on tec ively d in d luced <u>he fur</u> nary learn ns. It mathe	hniqu applie comp to nu <u>nction</u> differ abou will ematic	tes to ed in uter s umerio <u>in th</u> rentia t the be us cal fi	find the m studie cal di <u>e anal</u> l equ differ eful i elds	the nodels s wh fferer lytica ations rent n n atte like	interr of the ere entiation l form whither whither empting	nedia e diff xpres n and <u>n is co</u> ch w ds for ng an		nes. I pheno of the ration ated. usefu usefu ng fir neerir	n par omena ose d tech 1 in a rst orc	ticular wher ata ar niques solvin ler an
	meene		00100	, ei ui 11	100114					.011111	⊃.			Pro	gram	Spec	ific
	urse					Prog	gram	Outc	omes						Outc	-	
Outo	comes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	4
C	01	2	3	3	3	2	3	2	-	2	-	2	2	2	2	1	2
C	O2	2	3	3	3	3	2	2	-	2	-	2	2	2	1	1	2
C	O3	2	3	2	2	1	-	-	-	-	-	-	2	2	2	2	1
C	O4	3	3	3	2	2	1	_	-	_	-	_	2	2	1	2	1

2

2

2

2

INDUSTRIAL INSTRUMENTATION - I

L T P 3 0 0

С

3

8

8

COURSE OBJECTIVES

EI1401

• To introduce the measurement techniques of force, torque and speed.

• To introduce the measurement techniques of acceleration, Vibration and density

• To introduce the measurement Viscosity, Humidity and moisture.

• To introduce the temperature measurement techniques

• To introduce the pressure measurement techniques

Unit-I MEASUREMENT OF FORCE, TORQUE AND SPEED

Different types of load cells: Hydraulic, Pneumatic, Strain gauge, Magneto-elastic and Piezoelectric load cells - Different methods of torque measurement: Strain gauge, Relative angular twist. Speed measurement: Capacitive tacho, Drag cup type tacho, D.C and A.C tacho generators - Stroboscope.

Unit-II MEASUREMENT OF ACCELERATION, VIBRATION AND DENSITY

Accelerometers: LVDT, Piezoelectric, Strain gauge and Variable reluctance type accelerometers -Mechanical type vibration instruments - Seismic instruments as accelerometer – Vibration sensor -Calibration of vibration pickups - Units of density and specific gravity – Baume scale and API scale – Densitometers: Pressure type densitometers, Float type densitometers, Ultrasonic densitometer and gas densitometer.

Unit-III MEASUREMENT OF VISCOSITY, HUMIDITY AND MOISTURE

Viscosity: Saybolt viscometer - Rotameter type and Torque type viscometers – Consistency Meters – Humidity: Dry and wet bulb psychrometers – Resistive and capacitive type hygrometers – Dew cell – Commercial type dew meter. Moisture: Different methods of moisture measurements –Thermal, Conductivity and Capacitive sensors, Microwave, IR and NMR sensors, Application of moisture measurement - Moisture measurement in solids.

Unit-IV TEMPERATURE MEASUREMENT

Definitions and standards – Primary and secondary fixed points – Different types of filled in system thermometers – Sources of errors in filled in systems and their compensation – Bimetallic thermometers – IC sensors – Thermocouples: Laws of thermocouple, Fabrication of industrial thermocouples, Reference junctions compensation, Signal conditioning for thermocouple, Commercial circuits for cold junction compensation, Response of thermocouple, Special techniques for measuring high temperature using thermocouple – Radiation fundamentals - Radiation methods of temperature measurement – Total radiation pyrometers – Optical pyrometers – Two colour radiation pyrometers – Fiber optic sensor for temperature measurement – Thermograph, Temperature switches and thermostats – Temperature sensor selection, Installation and Calibration- Smart Temperature transmitter.

Unit-V PRESSURE MEASUREMENT

Units of pressure – Manometers: Different types, Elastic type pressure gauges: Bourdon tube, Bellows, Diaphragms and Capsules - Electrical methods: Elastic elements with LVDT and strain gauges - Capacitive type pressure gauge - Piezo resistive pressure sensor-Resonator pressure sensor - Measurement of vacuum: McLeod gauge, Thermal conductivity gauge, lionization gauges, Cold cathode type and hot cathode type – Pressure gauge selection, installation and calibration using dead weight tester-Smart Pressure transmitter.

TOTAL : 45 PERIODS

12

9

	SE Ol				Idant		01/0 41-	~								
At the e									ainla	ofvor	oue tr	m ag at	ftrong	sducers	laanaa	• to
CO1									-		•	pes o	i trans	saucers	sensor	10
			-						que an			1000 0	ftrong	ducora	laanaar	to
CO2									-		-	-		sducers	sensor	10
	measure physical quantities such as acceleration, vibration and density. Understand the construction and working principle of measuring Viscosity, Humidity and															
CO3																
		moisture Understand working of different types of temperature measuring instruments like RTD,														
CO4		nistor		ting of	unic		ypes o	i temp	Joratu		isuim	g msu	umen	ts like i	КТD,	
				ring of	addit	ional	types	of ten	merat	ure m	asuri	no ins	trume	nts like	<u> </u>	
C05				d radi					iperat		casuii	ing inis	uune	ino inc	/	
	uleili	locour		u ruur		pyrom.										
EXT	BOO	KS														
			nd M	anik	D.N.	"Mea	surem	ent sy	stems	Appl	icatio	n and	Desig	n", 6th		
	Graw-l							ient sy	stems	' ippi	loution	i una i	Desig	n , our		
								, Butte	erwort	h-Hei	nemai	nn, Int	ernati	onal E	dition,	
200																
EFE	RENC	ES														
-						-								ss, 2005		
. Patr	anabis	, D., "	Princ	iples o	of Ind	ustrial	Instru	ıment	ation"	, 3rd 1	Edition	n, Mc	Graw-	Hill Ec	lucatio	n,
201	7.															
. Eck	man D).P., "I	ndust	rial In	strum	entati	on", V	Viley	Easter	n Lim	ited, 1	990				
. Sing	gh,S.K	., "Inc	lustria	al Insti	rumen	tation	and C	Contro	ol", Ta	ta Mc	-Graw	-Hill	Educa	tion Pv	vt. Ltd.	, Nev
	hi, 200															
. Alo	k Baru	a, "Le	ecture	Notes	on Ir	dustri	ial Ins	trume	ntatio	n", NI	PTEL,	E-Lea	arning	g Cours	e, IIT	
	ragpu															
. Jaya	ashank	ar, V.	, "Lec	ture N	lotes o	on Ind	lustria	l Instr	ument	tation'	', NPT	TEL, E	E-Lear	ning C	ourse,	
IIT	Madra	s.														
. A.K	. Sawl	nney, '	"A Co	ourse i	n Eleo	ctroni	c Mea	surem	ents a	nd Ins	strume	entatio	n ", D	hanpat		
Rai	& Co.	(P) L	imited	1, 201	5.											
	ING (COUR	SE O	DUTC	OME	S WI	TH P	ROG	RAMI	ME O	UTC	OME	S			
	rse					Pro	gram	Oute	nmes					Prog	ram Sj	pecif
IAPP	II SC					110	Sram	Oute	JIIICS					0	utcom	les
IAPP Cou	omes		-	с	d	e	f	g	h	i	j	k	1	1	2	3
IAPP Cou	omes	a	b				2	1	-	-	-	-	-	-	2	_
IAPP Cou		a -	b -	2	2	2			1	1			1	Î	1	
IAPP Cou Outco		-	-					1							2	
IAPP Cou Outco	01	a - -	b - -	2 2	2 2	2	2	1	-	-	-	-	-	-	2	-
IAPP Cou Outco CC)1)2	-	-					1	-	-	-		-	-	2 2	-
IAPP Cou Outco CC)1)2	-	-	2 2	2	2	2 2	1	-	-	-	-	-	-	2	-
IAPP Cou Outco CC)1)2)3	-	-	2	2	2	2		-	-	-	-	-	-		-
IAPP Cou Outco CC CC)1)2)3)4	-	-	2 2	2	2	2 2	1	-	-		-	-	-	2	-

	1451	ELECTRICAL MACHINES	L	Τ	P	0
			3	0	0	3
		OBJECTIVES				
		e about D.C Machines e about Transformers				
		e and educate about Synchronous Machines				
		e and Educate about Three Phase Induction Motors				
		e and educate about Single Phase Induction Motors				
UNI		e and educate about special electrical machines C.MACHINES				9
D.C. M Armatu	Aachines: ure React	 Principle of operation and construction of motor and generator – t on-Various excitation schemes – Characteristics of Motor and Generator D.C. Motor. Applications of DC Motor and Generator 	-	-		_
UNIT		RANSFORMERS				9
Princip efficie	ole, Const ncy of a tr	ruction and Types of Transformer - EMF equation - Phasor diagram ransformer-Introduction to three phase transformer Connection. App ansformer.		-		nd
UNIT	III SX	NCHRONOUS MACHINES				9
Princip	ole of Ope	ration, type - EMF Equation and Phasor diagrams - Synchronous m tarting Methods, Torque V- Curves, inverted – V curves	otor-	Rota		
UNIT	IV TI	IREE PHASE INDUCTION MOTORS				9
		-principle of operation, Types – Torque-slip characteristics - Startin	g met	hods		-
		induction motors.				
Speed	control of	induction motors.		a		
Speed UNIT	control of V SI	induction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH				9
Speed UNIT Types motors	control ofVSIof singles - Shaded	induction motors.	tart ca	apaci	tor ru	n
Speed UNIT Types notors relucta	control ofVSIof singles - Shadedince moto	induction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types notors relucta	control ofVSIof singles - Shadedince moto	Yinduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types notors relucta C A	control of V SI of single s – Shaded ince moto	Yinduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the:	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types motors relucta C A CO1	control ofVSIof singles - Shadedance motoCOURSEt the endAbility	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types motors relucta C A CO1 CO2	control ofVSIof singles - Shadedance motoCOURSEt the endAbilityAbility	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types motors relucta C A CO1 CO2 CO3	control ofVSIof singles - Shadedince motoCOURSEt the endAbilityAbilityAbility	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types notors relucta C A CO1 CO2 CO3 CO4	control of V SI of single s – Shaded ince moto COURSE it the end Ability Ability Ability	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH phase induction motors –Double field revolving theory- Capacitor s pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines to understand about Single Phase Induction Motors	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types motors relucta CO1 CO2 CO3 CO4 CO5	control of V SI of single s – Shaded ince moto COURSE t the end Ability Ability Ability Ability Ability Ability Ability	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines to understand about Single Phase Induction Motors to understand about special electrical machines	tart ca moto	apaci or – S	tor ru switcl	n ned
Speed UNIT Types motors relucta CO1 CO2 CO3 CO4 CO5 T 1.	control of V SI of single s – Shaded ince moto COURSE it the end Ability Ability Ability Ability SEXT BO	Finduction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACE phase induction motors –Double field revolving theory- Capacitor s l pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (L OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines to understand about Single Phase Induction Motors to understand about special electrical machines	tart ca 5 moto 2:45):	apaci or – S 45 P	tor ru Switcl	n ned
Speed UNIT Types motors relucta CO1 CO2 CO3 CO4 CO5 T 1. 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2 2. 1 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	control of V SI of single s – Shaded ince moto COURSE t the end Ability Ability Ability Ability Ability Ability Ability Ability Theraja, E 2007 Fitzgerald 2002.	induction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH phase induction motors –Double field revolving theory- Capacitor s pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (I OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines to understand about Synchronous Machines to understand about Single Phase Induction Motors to understand about Single Phase Induction Motors to understand about Synchronous Machines OKS A.L., "A Text book of Electrical Technology", Vol.II, S.C Chand and A.E., Kingsley C., Umans, S. and Umans S.D., "Electric Machinery	tart ca 5 moto 2:45): d Co.,	apaci or – S 45 P	ERIC	n ned
Speed UNIT Types motors relucta CO1 CO2 CO3 CO4 CO5 T 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	control of V SI of single S – Shaded ince moto COURSE t the end Ability Ability Ability Ability Ability Ability Theraja, E 2007 Fitzgerald 2002.	induction motors. NGLE PHASE INDUCTION MOTORS AND SPECIAL MACH phase induction motors –Double field revolving theory- Capacitor s pole motor – Repulsion type motor – Universal motor – Hysteresis r – Brushless D.C motorStepper motor. TOTAL (I OUTCOMES of the course, the student should have the: to understand about D.C Machines to understand about Transformers to understand about Synchronous Machines to understand about Synchronous Machines to understand about Single Phase Induction Motors to understand about Single Phase Induction Motors to understand about Synchronous Machines OKS A.L., "A Text book of Electrical Technology", Vol.II, S.C Chand and A.E., Kingsley C., Umans, S. and Umans S.D., "Electric Machinery	tart ca 5 moto .:45): d Co., r", Mo	apaci or – S 45 P	ERIC	n ned

С	ourse Program Outcomes	Program Specific							
	MAPPING COURSE OUTCOMES WITH PROGRA								
	Krishna Vasudevan, IIT Madras.								
6.	NPTEL Video Lecture series on "Electrical Machines I"	and "Electrical Machines II" by Dr.							
	Education, 2010.								
5.	Nagrath I. J and Kothari D. P. 'Electric Machines', Four	th Edition, McGraw Hill							
4.	Del Toro, V., "Electrical Engineering Fundamentals", Pr	rentice Hall of India, New Delhi, 1995.							
	Press 2007.								
3.	B.S.Guru and H.R.Hiziroglu, "Electric Machinery and Transformer', Oxford university								
2.	Deshpande M. V., "Electrical Machines" PHI Learning I	Pvt. Ltd., New Delhi, 2011							
	Education, 2015.								

Course		Program Outcomes													Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	3	3	3	2	-	1	-	-	-	-	1	2	2	-			
CO2	3	3	3	3	3	-	1	-	-	-	-	1	2	2	-			
CO3	3	3	3	3	2	-	1	-	-	-	-	1	2	2	-			
CO4	3	3	3	3	3	-	1	-	-	-	-	1	2	2	-			
CO5	3	3	3	3	3	-	1	-	-	-	-	1	2	2	-			

EI1402	COMMUNICATION ENGINEERING	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

- To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues.
- To study the various analog and digital modulation techniques.
- To study the principles behind information theory and coding.
- To study the various digital communication techniques.

UNIT I ANALOG COMMUNICATION

Amplitude Modulation - Generation & Detection methods of AM, DSBSC - Generation & Detection methods of SSBSC, VSB - PSD, modulators and demodulators - Angle modulation - FM modulators and demodulators - PM modulators and demodulators , FM and PM – frequency spectrum - power relations : NBFM & WBFM - Nonlinear Effects in FM Systems - Armstrong method & Reactance modulation.

UNIT II PULSE MODULATION

Low pass sampling theorem – Quantization – PAM - Line coding - PCM, DPCM, DM, ADPCM and ADM - Channel Vocoder - Time Division Multiplexing - Frequency Division Multiplexing

UNIT III DIGITAL MODULATION AND TRANSMISSION

Phase shift keying - BPSK, DPSK, QPSK - Principles of M-ary signalling M-ary PSK -QAM

9

9

Comparison, ISI - Pulse shaping - Duo binary encoding - Cosine filters - Eye pattern - Equalizers.

UNIT IV INFORMATION THEORY & CODING

Measure of information & Entropy - Source coding theorem - Shannon-Fano coding - Huffman coding-LZ coding - Channel capacity, Shannon-Hartley law, Shannon's limit - Error control codes - cyclic codes - Syndrome calculation - Convolutional Coding - Sequential decoding - Viterbi decoding .

UNIT V SPREAD SPECTRUM & MULTIPLE ACCESS

PN sequences - properties - m-sequence - DSSS - Processing gain, Jamming - Frequency domain representation of Noise - Mathematical Representation of Noise.- FHSS - Synchronisation and tracking Multiple Access - FDMA, TDMA, CDMA.

TOTAL (L: 45+T: 0): 45 PERIODS

9

9

COURSE OUTCOMES

At the end of the course, the student should have the Ability:

CO1	Ability to comprehend and appreciate the significance and role of this course in the present
	contemporary world
CO2	To use data and pulse communication techniques
CO3	Apply digital communication techniques
CO4	Analyze Source and Error control coding
CO5	An in- depth knowledge of Spread Spectrum and Multiple Access Techniques

TEXT BOOKS

1.	H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007.
2.	S. Haykin "Digital Communications" John Wiley 2005

REFERENCES

1	•	B.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd edition, Oxford
		University Press, 2007
2	•	H P Hsu, Schaum Outline Series – "Analog and Digital Communications" TMH 2006
3	•	B.Sklar, Digital Communications Fundamentals and Applications" 2/e Pearson
		Education 2007.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	3	0	2	0	0	0	1	0	0	0	0	1	2	1	0
CO2	3	0	2	0	0	0	1	0	0	0	0	1	2	1	0
CO3	3	0	2	0	0	0	1	0	0	0	0	1	2	1	0
CO4	3	0	2	0	0	0	1	0	0	0	0	1	2	1	0
CO5	3	0	2	0	0	0	1	0	0	0	0	1	2	1	0

EE1471

CONTROL SYSTEMS (Common to EEE and EIE)

Objectives

- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed-loop frequency responses of systems.
- To introduce stability analysis and design of compensators
- To introduce state variable representation of physical systems

UNIT – I SYSTEMS AND REPRESENTATION

Basic elements in control systems: – Open and closed loop systems -Feed forward and Feedback control theory – Electrical analogy of mechanical and thermal systems – Transfer function – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.

UNIT – II TIME RESPONSE

Time response: – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction. Effects of P, PI, PID modes of feedback control –Time response analysis.

UNIT – III FREQUENCY RESPONSE

Frequency response: – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications

UNIT – IV STABILITY AND COMPENSATOR DESIGN

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Effect of Lag, lead and lag-lead compensation on frequency response-Design of Lag, lead and lag-lead compensator using bode plots.

UNIT – V STATE VARIABLE ANALYSIS

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability -Control Design Using State feedback.

Text Books:

- 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 2. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.

Reference Books:

- 1. Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015.
- 2. Richard C.Dorf and Bishop, R.H., "Modern Control Systems", PearsonEducation, 2009.
- 3. John J.D., Azzo Constantine, H. and HoupisSttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint2009.
- 4. RamesC.Panda and T. Thyagarajan, "An Introduction to Process Modelling Identification and Control of Engineers", Narosa Publishing House, 2017.
- 5. M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.
- 6. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

9 and

45

Total Periods:

Т

1

L

2

Р

0

С

3

9

9

9

Course	e Outcomes (CO)
CO1	Ability to develop various representations of system and to reduce the complex systems into simpler system in transfer function.
CO2	Ability to do time domain analysis of various models of linear system and understand the use of controllers in closed loop system
CO3	Ability to do frequency domain analysis of various models of linear system
CO4	Infer the stability of systems and ability to design appropriate compensator for the given specifications
CO5	Ability to represent the system in state variable forms

Course Outcomes				Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	4
CO1	3	3	3	3	3	2	2	1	2	2	3	2	3	3	3	2
CO2	3	3	3	3	3	2	2	1	2	2	3	2	3	3	3	2
CO3	3	3	3	3	3	2	2	1	2	2	3	2	3	3	3	2
CO4	3	3	3	3	3	2	2	1	2	2	3	2	3	3	3	2
CO5	3	3	3	3	3	2	2	1	2	2	3	2	3	3	3	2

CS1406	FUNDAMENTALS OF DATA STRUCTURES IN C	L	T	Р	C
	(INTEGRATED LAB)				
	(Common to EEE & EIE)	3	0	2	4

OBJECTIVES

- To learn the features of C
- To learn the linear and non-linear data structures
- To explore the applications of linear and non-linear data structures
- To learn to represent data using Trees and graph data structure
- To learn the basic sorting, searching, and Hashing Algorithm

UNIT I C PROGRAMMING BASICS

9+6

Structure of a C program – compilation and linking processes – Constants, Variables – Data Types – Expressions using operators in C – Managing Input and Output operations – Decision Making and Branching – Looping statements. Arrays – Initialization – Declaration – One dimensional and Two-dimensional arrays. Strings- String operations – String Arrays. Simple programs – matrix operations. Lab Component

- **IMPLEMENTATION OF BASIC C PROGRAMS** Basic C Programs – looping, data manipulations and arrays.
- **IMPLEMENTATION OF STRING HANDLING FUNCTIONS** Programs using strings – string function implementation.

UNIT II	FUNCTIONS, POINTERS, STRUCTURES AND UNIONS	9+6
Functions – P	ass by value – Pass by reference – Recursion – Pointers - Definition – Initializ	ation –

Pointers arithmetic. Structures and unions - definition - Structure within a structure - Union - Programs using structures and Unions - Storage classes, Pre-processor directives. Lab Component **IMPLEMENTATION OF USER DEFINED DATA TYPES** • a. Programs using structures and pointers. b. Programs involving dynamic memory allocations. **UNIT III** LINEAR DATA STRUCTURES 9+6 Arrays and its representations – Linked lists – Linked list-based implementation of Stacks and Queues - Evaluation of Expressions - Linked list based polynomial addition. Lab Component • IMPLIMENTATION OF LINKED LIST Write a C program to Design and implement Singly Linked List. IMPLEMENTATION OF STACK AND QUEUE Write a C program to implement the following a. Stack and its operations using Array and List b. Queue and its operations using Array and List. **APPLICATIONS OF LINEAR DATA STRUCTURES** a. Write a C program to design and implement polynomial addition using list. b. Write a C program to evaluate arithmetic expression. **UNIT IV** NON-LINEAR DATA STRUCTURES 9+6 Trees - Binary Trees - Binary tree representation and traversals -Binary Search Trees - Applications of trees. Graph and its representations – Graph Traversals – Topological Sort – Applications of graphs. Lab Component **IMPLEMENTATION OF TREE** • Write a C program to implement the following a. Construct binary search tree. b. Traverse the binary search tree recursively in pre-order, post-order and in-order. c. Count the number of nodes in the binary search tree **GRAPH TRAVERSAL** Write a C program to implement the following algorithms Depth first search. a b. Breadth first search. UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 9+6 Linear Search - Binary Search. Bubble Sort - Insertion sort - Merge sort - Quick sort - Hash tables -Overflow handling. Lab Component SORTING & SEARCHING Write a C program to implement the following sorting techniques to arrange a list of integers in ascending order. a. Quick sort b. Merge sort

- c. Linear Search
- d. Binary Search
- IMPLEMENTATION OF HASHING TECHNIQUES
 - Write a C program to Implement the following techniques
 - a. Linear Probing
 - b. Quadratic Probing
 - c. Double Hashing

PRACTICALS: 30 PERIODS THEORY: 45 PERIODS

TOTAL : 75 PERIODS

TEXT BOOKS

1. Reema Thareja, —Data Structures Using C, Second Edition, Oxford University Press, 2014.

REFERENCE BOOKS

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Fourth Edition, Pearson Education, 2013.
- 2. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, —Fundamentals of Data Structures in C, Second Edition, University Press, 2008.

COURSE OUTCOMES

CO1 To know the basic concepts of C

CO2 Suggest appropriate linear data structure for any given data set.

CO3 To learn the concepts of non-linear data Structures

CO4 Modify or suggest new data structure for an application

CO5 Appropriately choose the sorting, Searching, Hashing algorithm for an application.

Course					Pro	gram	Outo	comes	5				Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	4	
CO1	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	3	
CO2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	3	
CO3	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	3	
CO4	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	3	
CO5	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	3	

	EI1408	MACHINES AND CONTROL LABORATORY	L	Р	С				
			0	0	4	2			
	COURSE	OBJECTIVES							
•	To obtain the no load and load characteristics of D.C machines.								
•	To obtain the speed characteristics of D.C motor.								
•	To find out regulation characteristics of Transformer.								
•	To calculate the steady state error of a system for standard input signals.								
•	To analyse the stability of the system using time and frequency domain.								

S.NO	LIST OF EXPERIMENTS
1.	Open circuit characteristics of D.C. shunt generator.
2.	Load characteristics of D.C. shunt generator.
3.	Break test on D.C. shunt motor.
4.	Speed control of D.C. shunt motor.
5.	Open circuit and short circuit tests on single phase transformer (Determination of equivalent circuit parameters).
6.	Load test on single phase induction motor.
7.	Simulation and experimental verification of First order system
8.	Simulation of Second order system
9.	Compute the impulse, step, ramp and parabolic responses of the given system and calculate the steady state error.
10.	Determine the stability of the unity feedback system for the given open loop transfer function using bode, Nyquist and root locus.
11.	Determine the system controllability and observability and comment
C	ourse Outcome:
0	n completion of this Course, the students will be able to
CO1	Ability to make use of basic concepts to obtain the no load and load characteristics of D.C machines.
CO2	Analyze and draw conclusion from the characteristics obtained by conducting experiments on machines.
CO3	Ability to interpret characteristics of the system to develop mathematical model.
CO4	Ability to do time domain and frequency domain analysis of various models of linearsystem.
CO5	Ability to come out with solution for complex control problem.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes		Program Outcomes													Program Specific Outcomes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	-	2	1	-	-	-	-	1	-	1	1	2	2	-		
CO2	2	-	2	1	-	-	-	-	1	-	1	1	2	2	-		
CO3	2	-	2	1	-	-	-	-	1	-	1	1	2	2	-		
CO4	2	-	2	1	-	-	-	-	1	-	1	1	2	2	-		
CO5	2	-	2	1	-	-	-	-	1	-	1	1	2	2	-		

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

1.	DC Shunt Motor with Loading Arrangement
2.	Single Phase Transformer
3.	Single Phase Induction Motor with Loading Arrangement

4.	Single Phase Auto Transformer
5.	Single Phase Resistive Loading Bank setup
6.	Sufficient number of Ammeters, Voltmeters, (or Multimeters),
	Switches, tachometers, Wattmeter.
7.	Simulation Software (5 Users)
	(Pspice / Matlab /other Equivalent software Package) with PC.

EI1409	MEASUREMENTS AND TRANSDUCERS LABORATORY	L	Т	Р	С
		0	0	4	2

COURSE OBJECTIVES

•	To make the students aware of basic concepts of measurement and operation of different types of
	transducers.
•	To make the students conscious about static and dynamic characteristics of different types of
	transducer.
•	To make the students to analyze step response of RTD
•	To make the student to study the Synchros and Proximity sensor
•	To make the students to study the digital transducer

S.NO	LIST OF EXPERIMENTS
1.	Displacement versus output voltage characteristics of a potentiometric transducer.
2.	Characteristics of Strain gauge and Load cell transducer.
3.	Characteristics of LVDT, Hall Effect transducer and Photoelectric tachometer.
4.	Characteristics of LDR, thermistor transducer.
5.	Step response characteristic of RTD and thermocouple transducers.
6.	Temperature measurements using RTD with three and four leads.
7.	Measurement of Angular displacement using resistive and Capacitive transducer.
8.	Characteristics of Synchros and Proximity sensor
9.	Level measurement using Ultrasonic transducer.
10.	Measurement of temperature using IR thermometer and IC sensor
11.	Study of Digital transducer
12.	Study of Smart transducers
	TOTAL: 60 PERIODS

COURSE OUTCOMES (COs)

S.NO	LIST OF EXPERIMENTS
CO1	Understand the concepts of measurement, error and uncertainty.
CO2	Understand the static and dynamic characteristics of measuring instruments.
CO3	Gain knowledge about the principle of operation and characteristics of different types of
005	resistance, capacitance and inductance transducers.
CO4	Acquire knowledge of analyzing different stages of signal conditioning units.
CO5	. Acquire knowledge of advancement of digital transducers

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	Strain gauge and Load cell trainer -1	
2.	LVDT trainer -1	
3.	Hall Effect transducer trainer -1	

4.	Photoelectric tachometer tachometer -1
5.	LDR Trainer -1
6.	Thermistor, Thermocouple J and K type -1
7.	RTD 3 wire and 4 wire -1
8.	Synchros and Proximity sensor trainer -1
9.	Ultrasonic transducer setup -1
10.	Sufficient number of power supply, Galvanometer, Bread board, Multimeter, resistors, Decade
	Capacitance box, Decade resistance box, Decade Inductance box, CRO.

Course Outcomes					Program Specific Outcomes										
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	2	1	-	1	-	-	1	-	-	1	2	2	1
CO2	2	2	2	1	-	1	-	-	1	-	-	1	2	2	1
CO3	2	2	2	1	-	2	-	-	1	-	-	1	2	2	1
CO4	2	2	2	1	-	1	-	-	1	-	-	1	2	2	1
CO5	2	2	2	1	-	1	-	-	1	-	-	1	2	2	1

HS1310	PROFESSIONAL SKILLS LAB	L	Р	Т	С
	(Common to CSE, EEE, CHEM, EIE, CIVIL, AI & DS)	0	0	2	1

OBJECTIVES

- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully.

LIST OF EXPERIMENTS

UNIT I

Introduction to Soft Skills- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Making an Oral Presentation–Planning and preparing a model presentation; Organizing the presentation to suit the audience and context; Connecting with the audience during presentation; Projecting a positive image while speaking; Emphasis on effective body language-General awareness of Current Affairs.

UNIT II

Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— Making a Power Point Presentation -- Structure and format; Covering elements of an effective presentation; Body language dynamics. Making an Oral Presentation–Planning and preparing a model presentation; Organizing the presentation to suit the audience and context; Connecting with the audience during presentation; Projecting a positive image while speaking; Emphasis on effective body language

UNIT III

Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic – questioning and clarifying –GD strategies- Structure and dynamics of a GD; Techniques of effective participation in group discussion; Preparing for group discussion;

6

6

6

Accepting others' views / ideas; Arguing against others' views or ideas, etc.

UNIT IV

Basics of public speaking; Preparing for a speech; Features of a good speech; Speaking with a microphone. (Famous speeches may be played as model speeches for learning the art of public speaking). Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview –Job Interviews: purpose and process; How to prepare for an interview; Language and style to be used in an interview; Types of interview questions and how to answer them.

UNIT V

Recognizing differences between groups and teams- managing time managing stress- networking professionally- respecting social protocols understanding career management-developing a long- term career plan making career changes.

TOTAL : 30 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

One Server

30 Desktop Computers

One Hand Mike

One LCD Projector

REFERENCE BOOKS

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015
- 2. E. Suresh Kumar et al. Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014
- 4. S. Hariharanetal. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, OrientBalckSwan: Hyderabad, 2016. COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Make effective presentations

- CO2 Participate confidently in Group Discussions
- CO3 Attend job interviews and be successful in them.
- CO4 Develop adequate Soft Skills required for the workplace
- CO5 Develop their speaking skills to enable them speak fluently in real contexts

Course					Program Specific Outcomes										
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	0	2	0	2	1	0	0	0	2	3	0	0	2	2	0
CO2	0	2	0	2	0	0	0	0	2	3	0	0	2	0	0
CO3	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0
CO4	0	0	0	0	0	0	0	0	2	2	0	2	0	0	0
CO5	0	2	1	1	2	0	2	0	2	3	0	2	2	2	0

6

6

SEMESTER V

To impart knowledge on different types of power semiconductor devices and their switching

To learn the Operation, switching techniques and basics topologies of DC-DC switching regulators. To Compute and analyse the different modulation techniques of pulse width modulated inverters

2.	P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2019.
3.	Ashfaq Ahmed 'Power Electronics for Technology', Pearson Education, Indian reprint, 2018.
Re	eference Books:
1.	Joseph Vithayathil,' Power Electronics, Principles and Applications', McGraw Hill Series, 6th
	Reprint, 2019.
2.	Philip T. Krein, "Elements of Power Electronics" Oxford University Press, 2019 Edition.
3.	L. Umanand, "Power Electronics Essentials and Applications", Wiley, 2020.

3. Ashfaq Ahmed 'Power Electronics for **Reference Books:**

UPS.

UNIT - V

EE1571

Objectives

UNIT - I

characteristics.

controlled rectifiers.

to Driver and snubber circuits.

UNIT - IV INVERTERS

1. M.H. Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, third Edition, New Delhi, 2019.

Single phase and Three phase AC voltage controllers: Control strategy- Power Factor Control -

Text Books:

AC TO AC CONVERTERS

- converters. Applications -welding.

UNIT - III DC TO DC CONVERTERS

POWER SEMI-CONDUCTOR DEVICES

- 9
- **UNCONTROLLED AND PHASE-CONTROLLED CONVERTERS** UNIT - II

9 Uncontrolled converters- half bridge and full bridge converters. Controlled converters: 2-pulse, 3-pulse and 6-pulse converters - performance parameters. Effect of source inductance. Firing Schemes for converter. Dual converters. Applications-light dimmer, Excitation system.

Study of switching devices - SCR, TRIAC, GTO, BJT, MOSFET, IGBT and IGCT. Static characteristics: SCR, MOSFET and IGBT. Triggering and commutation circuit for SCR. Introduction

and to understand harmonic reduction methods. To understand the operation of AC to AC converter.

Step-down and step-up chopper: control strategy. Introduction to types of choppers: A, B, C, D and E -Switched mode regulators- Buck, Boost, Buck- Boost regulator. Introduction to Resonant Converters. Applications-Battery operated vehicles and Solar PV systems.

Single phase and three phase voltage source inverters (both120⁰ mode and 180⁰ mode): Voltage& harmonic control- PWM techniques: Multiple PWM, Sinusoidal PWM, modified sinusoidal PWM.

POWER ELECTRONICS

To understand the operation, characteristics and performance parameters of uncontrolled and

0

C

9

0 3

L

3

Multistage sequence control. -Single phase and three phase cyclo - converters. Introduction to Matrix

Total Periods: 45

9

9

Introduction to space vector modulation. Current source inverter - Applications-Induction heating,

5. S.Rar 6. M.D.	 Ned Mohan Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Converters, S.Rama Reddy, 'Fundamentals of Power Electronics', Narosa Publications, 2018. M.D. Singh and K.B. Khanchandani, "Power Electronics," Mc Graw Hill India, 2017. JP Agarwal," Power Electronic Systems: Theory and Design" Pearson Education, 2019. 															
		utcomes (CO)														
CO1	Ability to understand the operation of semiconductor devices and its dynamic characteristics.															
CO2	Abi	Ability to analyse and choose the Uncontrolled and controlled converters for real time														
		applications.														
CO3	Ability to analyse the operation of DC- DC converter and its applications.															
CO4									ques	and a	pply	voltag	ge co	ntrol a	and ha	rmonic
				hods												
CO5	Able	e to U	nderst	tand th	ie ope	ration	of A	C volt	age co	ontroll	ers an	d its a	applica	ations.		
Cour	50					Pro	gram	Outer	mag					Prog	ram Sp	oecific
						1108	31 a 111	Oute	Jines					0	utcom	es
Outcor	nes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO	1	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO	2	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2
CO.	O3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 2										2					
CO4 3 3 3 3 1 1 1 1 1 1 3									3	2						
CO	5	3	3	3	3	3	1	1	1	1	1	1	1	3	3	2

EE1572	MICROPROCESSORS AND MICROCONTROLLERS	L	Τ	P	С
	(Common to EEE and EIE)	3	0	0	3

Objectives

- To study the architecture, pin diagram, memory organisation and interrupts of 8085 microprocessor and 8051 microcontroller.
- To study the addressing modes & instruction sets of 8085 and 8051.
- To develop skills in simple programming writing using assembly languages.
- To introduce commonly used peripherals/ interfacing ICs.
- To study and understand typical applications using 8085 and 8051.

UNIT - I 8085 PROCESSOR 9 Hardware Architecture, pinouts – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Interrupts. CO1

9

9

UNIT - IIPROGRAMMING OF 8085 PROCESSORInstruction format and addressing modes - Assembly language format - Data transfer, data

Manipulation& control instructions – Programming: Loop structure with counting & Indexing – Look up table - Subroutine instructions – stack, Timing diagram of instructions.

UNIT – III PERIPHERAL INTERFACING

Study on need, architecture, configuration and interfacing, with ICs: 8251, 8253/8254, 8255, 8259, 8279, A/D and D/A converters & its Interfacing with 8085.

UNIT	- IV	80	51 N	IICR	<u>0 CC</u>	ONTR	ROLL	ER									9
	are Arc								uildin	g Bl	ocks	of I	Proces	sor –	Me	mory	
	zation –																CO4
	ction se						-				0					ions;	001
Addre	ssing mo	odes; '	['1m11	ng Di	agram	n; Cor	nparis	son to	Prog	ramm	ing co	oncep	ots wit	h 808.	5.		
UNIT	- V	Μ	ICR	0 CC	ONTR	OLL	ER P	ROG	RAN	IMIN	G &	APP	LICA	TION	IS		9
	e progra															otor,	
	er motor																CO5
													r	Fotal	Perio	ds:	45
Text I													· .			** ***	
	S. Gaonk					Archi	tectur	e Prog	gramr	ning a	and A	pplic	ation'	with 8	8085,	Wiley	7
	stern Ltd	,		,		1	lionar	***		ыма	a#0.00	ntrall	ora" I	лит	oomir	og Dyrt	Itd
	nil Math 16.	ui aj	eeba	nanua	i ranc	ia, iv	nerop	noces	sor ar		cioco	iiuoi	leis , i	ΠL	earnn	ig rvi	. Liu,
	uhamma	d Ali	Mazi	di& J	lanice	Gilli	Mazio	li. R.I	D.Kin	elv 'T	The 80	51 N	licro (Contro	oller a	nd	
	nbedded							,		-							
	ence Boo									•							
	ishna Ka						licroc	ontro	llers"	, East	ern C	ompa	ny Ed	ition,	Prent	ice Ha	ıll of
	lia, New													_			
	RAM," (als Ai	rchite	cture	and C	rgani	zatior	n" Ne	w age	Intern	nation	al Pri	vate
	,	ifth edition, 2017. Kumar Mandal, Microprocessor & Microcontroller Architecture, Programming &															
		g using 8085,8086,8051,McGraw Hill Edu,2013.															
	ay V.Des										'. Mc	Graw	Hill F	Edu. 2	016.		
	ouglas V.														0101		
	e Outco			•													
CO1	Ability	to ex	plair	the a	archite	ecture	, men	nory o	organi	satio	n and	interi	upt sti	ructur	es of a	8085	
	Microp																
CO2	Ability		-										s, timi	ng dia	agram	and t	0
	write th													1		4	. 11
CO3	Ability Ability																
CO4	8051.	to ex	pian	i tile a	arcinto	ecture		101000	JIIIOI	iei, a	Juless	ing i	noues	α ms	uucu	on set	\$ 01
CO5	Ability	to de	velo	n the	Micro	proce	essor	and N	licroc	ontro	ller ba	used a	applica	ations			
																n Spe	cific
Co	ourse					Pro	gram	Outo	comes						U	comes	
Out	comes				,		e							1	2	3	4
		a	b	c	d	e	f	g	h	i	j	k	1				
C	CO1	3	2	2	1	1	1	1	2	1	1	1	1	3	2	2	1
6	CO2	3	3	2	1	3	3	1	2	1	1	3	1	3	3	2	1
	CO3	3	2	2	1	1	1	1	2	1	1	1	1	3	3	2	1
C	CO4	3	2	2	1	1	2	1	2	1	1	1	1	3	3	2	1
(C 05	3	3	3	3	3	3	1	2	1	1	3	1	3	2	2	1

 To in To st To st To ut To ha UNIT I Cell and compone flow - B Transduct Fibre opt UNIT II PROCE Measurer measurer pH of bloc UNIT II Electrode surface e amplifier Electrica safety pa UNIT IV Radiogram 	ntroduce study the inderstar have a ba d its stru ents of a Biomech icers – s otic temp I NOI EDURE ement of ement of ements – lood –me II les – Lin	ECTIVES fundamentals of biomedical engineering communication mechanics in a biomedical system with few exam asurement of certain important electrical and non-electrical paramed d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its to biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. VELECTRICAL PARAMETERS MEASUREMENT AND DI Sensore - Photo Plethysmography, Body Plethysmography – Feasurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA ab electrodes –floating electrodes – pregelled disposable electrode	fundan fundan ns -Kid als an ature f AGN Pulm Blood measu LYSI es - Mi	ment dney nd tra meas OST nonar l Gas reme S	and lansduc urema TC Ty fun analy ents.	blood cers - ents - 9 nction ysers, 9
 To in To st To st To st To ui To ha UNIT I Cell and compone flow - B Transduce Fibre option UNIT II PROCE Measure measure pH of bloce UNIT II Electrode surface e amplifies Electrica safety pa UNIT II Radiogram	ntroduce study the inderstar have a ba d its stru ents of a Biomech icers – s otic temp I NOI EDURE ement of ement of ements – lood –me II les – Lin	fundamentals of biomedical engineering communication mechanics in a biomedical system with few exam asurement of certain important electrical and non-electrical parame d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its f biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI biometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	fundan fundan ns -Kid als an ature f AGN Pulm Blood measu LYSI es - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers - ents - 9 netion ysers, 9
 To in To st To st To st To ui To ha UNIT I Cell and compone flow - B Transduce Fibre option UNIT II PROCE Measure measure pH of bloce UNIT II Electrode surface e amplifies Electrica safety pa UNIT II Radiogram	ntroduce study the inderstar have a ba d its stru ents of a Biomech icers – s otic temp I NOI EDURE ement of ement of ements – lood –me II les – Lin	fundamentals of biomedical engineering communication mechanics in a biomedical system with few exam asurement of certain important electrical and non-electrical parame d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its f biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI biometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	fundan fundan ns -Kid als an ature f AGN Pulm Blood measu LYSI es - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers ents 9 netion ysers 9
 To st To st To un To ha UNIT I Cell and compone flow - B Transduce Fibre opt UNIT II PROCE Measuren pH of blog UNIT II Electrode surface e amplifier Electrica safety pa UNIT IV Radiogram 	tudy the inderstan nave a ba d its stru ents of a Biomech icers – s bic temp I NOI EDURES ement of ements – lood –ma II les – Lin	communication mechanics in a biomedical system with few exam asurement of certain important electrical and non-electrical parame d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its f biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r	fundan fundan ns -Kid als an ature f AGN Pulm Blood measu LYSI es - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers - ents - 9 netior ysers 9
 To st To u To ha UNIT I Cell and compone flow - B Transduce Fibre option UNIT II PROCE Measurement Measurement PROCE Measurement Electrode surface et amplifier Electrica safety pa UNIT II Radiogram 	d its stru ents of a Biomech icers – s otic temp I NOI EDURE ement of ements – lood –me II les – Lin	asurement of certain important electrical and non-electrical parame d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its to biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r	fundan fundan ns -Kid als an ature f AGN Pulm Blood measu LYSI es - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers ents 9 netion ysers 9
 To un To ha To ha UNIT I Cell and compone flow - B Transduce Fibre opt UNIT II PROCE Measurement Measurement pH of bloce UNIT II Electrode surface et amplifier Electrica safety pa UNIT IN Radiogram 	d its stru ents of a Biomech cers – s btic temp I NOI EDURES ement of ements – lood –me Iles – Lin	d the basic principles in imaging techniques sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its to biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI Selicon pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – Feasurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR to ELECTRICAL PARAMETERS ACQUISITION AND ANA	fundan ns -Kid als an ature 1 [AGN Pulm Blood measu LYSI cs - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers ents 9 netion ysers 9
 To hat UNIT I Cell and compone flow - B Transduct Fibre option UNIT II PROCE Measurer measurer pH of bloct UNIT II Electrode surface et amplifier Electrica safety pa UNIT II Radiogram 	d its stru ents of a Biomech icers – s otic temp I NOI EDURE ement of ements – lood –ma II les – Lin	sic knowledge in life assisting and therapeutic devices FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its for a biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. VELECTRICAL PARAMETERS MEASUREMENT AND DI blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	ns -Ki als an ature f AGN Pulm Blood measu LYSI cs - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC sy fun analy ents.	blood cers ents 9 netion ysers 9
UNIT I Cell and compone flow - B Transduc Fibre opt UNIT II PROCE Measuren pH of blo UNIT II Electrode surface e amplifien Electrica safety pa UNIT IV Radiogra	d its stru ents of a Biomech acers – s btic temp I NOI EDURES ement of ements – lood –mo II les – Lin	FUNDAMENTALS OF BIOMEDICAL ENGINEERING cture – Resting and Action Potential – Nervous system and its to biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI Selection pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR to ELECTRICAL PARAMETERS ACQUISITION AND ANA	ns -Ki als an ature f AGN Pulm Blood measu LYSI cs - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC y fun analy ents.	blood cers ents 9 netion ysers 9
Cell and compone flow - B Transduc Fibre opt UNIT II PROCE Measurer measurer pH of blo UNIT II Electrode surface e amplifier Electrica safety pa UNIT IV Radiogra	d its stru ents of a Biomech licers – s otic temp I NOI EDURES ement of ements – lood –ma II les – Lin	cture – Resting and Action Potential – Nervous system and its f biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI Sector Physiological sign blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	ns -Ki als an ature f AGN Pulm Blood measu LYSI cs - Mi	ment dney nd tra meas OST nonar l Gas reme S	als - and lansduc uremo TC TC y fun analy ents.	blood cers - ents - 9 netior ysers 9
compone flow - B Transduc Fibre opt UNIT II PROCE Measuren pH of blo UNIT II Electrode surface e amplifien Electrica safety pa UNIT IV Radiogra	ents of a Biomech acers – s Dic temp I NOI EDURES ement of ements – lood –ma II les – Lin	cture – Resting and Action Potential – Nervous system and its f biomedical system- Cardiovascular systems- Respiratory system anics of bone - Biomechanics of soft tissues -Physiological sign election criteria – Piezo electric, ultrasonic transducers - Tempera erature sensors. NELECTRICAL PARAMETERS MEASUREMENT AND DI Sector Physiological sign blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	ns -Ki als an ature f AGN Pulm Blood measu LYSI cs - Mi	dney nd tra meas OST nonar I Gas reme S	and lansduc urema TC Ty fun analy ents.	blood cers ents 9 netion ysers 9
Measurer measurer pH of blo UNIT II Electrodo surface o amplifier Electrica safety pa UNIT IN Radiogra	ement of ements – lood –me II les – Lin	blood pressure - Cardiac output - Heart rate - Heart sound - spirometer – Photo Plethysmography, Body Plethysmography – easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	Blood measu LYSI es - Mi	l Gas reme S	analy	nction ysers 9
measuren pH of blo UNIT II Electrodo surface o amplifien Electrica safety pa UNIT IV Radiogra	ements – lood –m II les – Lin	spirometer – Photo Plethysmography, Body Plethysmography – Easurement of blood pCO2, pO2, finger-tip oximeter - ESR, GSR r ELECTRICAL PARAMETERS ACQUISITION AND ANA	Blood measu LYSI es - Mi	l Gas reme S	analy	ysers 9
applicati	er - ECG al safety arameter V aphic an opy – T ion in Bi	 Amplifiers, Preamplifiers, differential amplifiers, chopper a – EEG – EMG – ERG – Lead systems and recording methods – in medical environment, shock hazards – leakage current-Instr s of biomedical equipment. <u>IMAGING MODALITIES AND ANALYSIS</u> ad fluoroscopic techniques – Computer tomography – MRI – nermography –Different types of biotelemetry systems - Retina ometric systems. <u>IMEE ASSISTING</u> THERAPEUTIC AND POPOTIC DEVI	Typic rumen – Ultr I Ima	iers cal w ts fo cason	– Isol avefo r chee ograp - Ima	lation rms cking <u>9</u> ohy -
UNIT V		LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVI			9	<u></u>
machine	e – Audi	efibrillators – Ventilators – Nerve and muscle stimulators – Diath o meters – Dialysers – Lithotripsy - ICCU patient monitoring sys –Orthopedic prostheses fixation.				
		TOTAL: 45 PER	RIODS	S		
		MES: At the end of the course students will have the	1	·		
	-	understand the philosophy of the heart, lung, blood circulation and	a resp	oratio	on sys	tem.
	-	provide latest ideas on devices of non-electrical devices.	1			
		gain knowledge on various sensing and measurement devices of e			-	
		bring out the important and modern methods of imaging techniqu				ysis.
CO5 A		explain the medical assistance/techniques, robotic and therapeutic	equij :	pmen	nt.	

TEXT BOOKS:

1.	Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of
	India, New Delhi, 2007.
2.	Khandpur R.S, Handbook of Biomedical Instrumentation, Tata McGraw-Hill, New Delhi, 2nd
	edition, 2003.
3.	Joseph J Carr and John M.Brown, Introduction to Biomedical Equipment Technology,
	John Wiley and sons, New York, 4 th edition, 2012.

REFERENCES

1.	John G. Webster, Medical Instrumentation Application and Design, John Wiley and
	sons, New York, 1998.
2.	Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007.

- Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011.
 Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition,
- 4. Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition Boca Raton, CRC Press LLC, 2006.
- 5. M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003.

MAPPING BETWEEN CO, PO AND PSO WITH CORRELATION LEVEL 1/2/3

Course Outcomes					Pro	gram	Outco	omes					-	ram Sp utcom	pecific les
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	-	-	2	2	2	1	-	-	-	-	-	1	2	2	-
CO2	-	-	2	2	2	1	-	-	-	-	-	1	2	2	-
CO3	-	-	2	2	2	1	-	-	-	-	-	1	2	2	-
CO4	-	-	2	2	2	1	-	-	-	-	-	1	2	2	-
CO5	-	-	2	2	2	1	-	-	-	-	-	1	2	2	-

EI150	2 INDUSTRIAL INSTRUMENTATION-II	L	Τ	Р	С
		3	0	0	3
COURSE	COBJECTIVES				
• T	o introduce variable head type flow meters				
• T	o introduce quantity meters, air flow meters and mass flow meters				
• T	educate on electrical type flow meters				
• T	educate on the level measurement techniques				
• T	educate on Viscosity, Humidity and Moisture content				
UNIT I	VARIABLE HEAD TYPE FLOWMETERS				9
Expressio	n for flow rate through restriction (compressible and incompressible	flow) – ł	Head	type
flowmete	- Principle, Construction and operations of Orifice plate and its different	nt type	es, Ve	enturi	tube
– Flow n	ozzle - Dall tube - Pitot tube: : combined pitot tube, averaging pitot	tube,	Cd v	ariati	on –
pressure t	appings – Installation and applications of head flow meters				
l					
Unit-II	QUANTITY METERS, AREA FLOW METERS AND MASS FL	OW			9
	METERS				
	80				

Positive displacement flow meters: Principle, Construction and operation of Nutating disc, Reciprocating piston and Oval gear flow meters – Inferential meter – Turbine flow meter – Variable Area flow meter: Rotameter – theory, characteristics, installation and applications – Mass flow meters:– Angular momentum – Thermal, Coriolis type mass flow meters – Calibration of flow meters: Dry and wet type, Dynamic weighing method.

Unit-III ELECTRICAL TYPE FLOW METERS

Principle and constructional details of Electromagnetic flow meter – Ultrasonic flow meters – Laser Doppler anemometer – Vortex shedding flow meter – Target flow meter – Guidelines for selection of flow meter – Open channel flow measurement – Solid flow rate measurement.

Unit-IV LEVEL MEASUREMENT

Level measurement: Sight glass, Float gauges - Displacer type – D/P methods - Bubbler system-Load cell – Electrical types – Conductivity sensors – Capacitive sensors – Nucleonic gauge - Ultrasonic gauge – Boiler drum level measurement :– Differential pressure method and Hydrastep method -Solid level measurement.

Unit-V TRANSMITTERS

Pneumatic transmitter: Operation - Electronic transmitter: Study of 2 wire and 4 wire transmitters – Operation of Electronics and Smart transmitters – Principle of operation of flow, level, temperature and pressure transmitters – Installation and Calibration of smart and conventional transmitters.

TOTAL (L: 45+T: 30):75 PERIODS

9

9

0

COURSE OUTCOMES

At the end of the course, the student should have the:

	-
CO1	Ability to understand the construction, installation and working of different variable head type
	flow meters.
CO2	To educate variable area flow meters, mass flow meters, electrical type, open channel and solid
	flow meters.
CO3	Able to understand the construction, working and calibration of different quantity flow meters,
CO4	Ability to gain knowledge about the construction, working and calibration of different type of
	transmitters.
CO5	Ability to choose appropriate flow meters or level sensor for an application.

 TEXT BOOKS

 1.
 Doebellin, E.O. and Manik D.N., "Measurement systems Application and Design", 5th Edition, Tata McGraw-Hill Education Pvt. Ltd., 2007.

 2.
 Patranabis, D., "Principles of Industrial Instrumentation", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2010.

R	EF	ERENCES	
1.	•	Liptak, B.G., Instru	umentation Engineers Handbook (Measurement), CRC Press, 2005.
2.	•	Singh,S.K., Industr	rial Instrumentation and Control, Tata McGrawHill Education Pvt. Ltd.,
		New Delhi, 2009.	
3.	•	Jain, R.K., Mechar	nical and Industrial Measurements, Khanna Publishers, Delhi, 1999.

Course					Prog	gram	Outc	omes					-	ram Sp utcom	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	0	0	3	2	2	0	1	0	0	0	0	0	2	1	0
CO2	0	0	0	3	2	2	1	0	0	0	0	0	2	1	0
CO3	0	0	1	3	2	1	1	0	0	0	0	0	2	1	0
CO4	0	0	1	2	3	1	1	0	0	0	0	0	2	1	0
CO5	0	0	0	2	1	3	2	0	0	0	0	0	1	2	0

EE1591	MICROPROCESSORS AND MICROCONTROLLERS LABORATORY	L	Т	Р	С
		0	0	4	2

Objectives

• To provide training on programming of microprocessors and microcontrollers and understand the interface requirements.

• To simulate various microprocessors and microcontrollers using KEIL or Equivalent simulator.

LIST OF EXPERIMENTS

- 1. Simple arithmetic operations: addition / subtraction / multiplication / division.
- 2. Programming with control instructions:
 - (i) Ascending / Descending order, Maximum / Minimum of numbers.
 - (ii) Programs using Rotate instructions.
 - (iii) Hex / ASCII / BCD code conversions.
- 3. Interface Experiments: with 8085
 - (i) A/D Interfacing. & D/A Interfacing.
- 4. Traffic light controller.
- 5. I/O Port / Serial communication
- 6. Read a key, interface display
- 7. Interface 8253 timer and perform mode-2 and mode-3 operation.
- 8. Demonstration of basic instructions with 8051 Micro controller
 - (i) Conditional jumps & looping
 - (ii) Calling subroutines.
- 9. Programming timer of 8051
- 10. Programming I/O Port of 8051 for
 - (i) Interfacing of A/D & D/A
 - (ii) Interfacing of DC & AC motors
- 11. Programming Practices with Simulators/Emulators/open source
- 12. Application hardware development using embedded processors.

Total Periods:

60

Sl.No.	Description of Equipment	Quantity required
1	8085 Microprocessor Trainer with Power Supply	15
2	8051 Micro Controller Trainer Kit with power	15
	Supply	
3	8255 Interface boards	5
4	8251 Interface boards	5
5	8259 Interface boards	5
6	8279 Keyboard / Display Interface boards	5
7	8253/8254 timer/ counters	5
8	ADC and DAC cards	5
9	AC & DC motor with Controllers	5
10	Traffic Light Control Systems	5

Course Outcomes (CO)

CO1	Ability to perform basic programming using 8085 and 8051
CO2	Ability to perform interfacing of various peripheral ICs using 8085 & 8051
CO3	Ability to program basic interfacing applications.
CO4	Ability to use basic Simulators/Emulators/open source related to 8085 & 8051.
CO5	Ability to design and develop a simple application using any embedded processors.

Course Outcomes			-	Program Specific Outcomes											
	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	3	2	1	1	1	1	1	1	1	1	1	3	2	2	1
CO2	3	2	2	2	2	2	2	1	1	1	1	3	2	3	2
CO3	3	2	3	2	2	1	2	1	1	1	1	3	2	3	2
CO4	3	2	2	2	3	2	1	1	1	1	1	3	2	3	2
CO5	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3

Ε	I1507	INDUSTRIAL INSTRUMENTATION LABORATORY	Т	Р	C					
		0	0	4	2					
	COURSE ()BJECTIVES								
•	To impart an industry	adequate knowledge and expertise to handle equipment generally available	ilat	ole in a	ın					
•	To make the	students aware about calibration of meters, sensors and transmitters.								
•	To make the students conscious about the working and operation of different types of analytical Instruments.									
•	To identify,	Formulate, and analyze problems regarding sensors and transmitter								
	LIST OF E	XPERIMENTS								
1.	Measuremen	t of speed, torque and vibration parameters.								
2.	Calibration	of pressure gauge using dead weight tester.								
3.	Measuremen	t of level using Differential Pressure Transmitter								

4.	Measurement of flow using
	a. Discharge coefficient of orifice plate
	b. Calibration of Rotameter
5.	Design and Testing of Electromagnetic Flow meters.
6.	Measurement of Conductivity, Moisture and Viscosity of test solutions.
7.	Standardization and measurement of pH values of different solutions
8.	Measurement and analysis of ECG signals.
9.	Vacuum pressure measurement
10.	Pulse rate measurement
11.	Measurement of Absorbance and Transmittance of Test solutions using IR-spectrometer.
12.	Measurement of Absorbance and Transmittance of Test solutions using UV-spectrometer.
	TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1.	Orifice plate 1
2.	Dead weight tester with pressure gauge 1
3.	Torque trainer 1
4.	Saybolt Viscometer 1
5.	Vacuum gauge 1
6.	DP transmitter 1
7.	UV – Visible spectrophotometer 1
8.	IR – Visible spectrophotometer 1
9.	pH meter 1
10.	Conductivity meter 1
11.	ECG trainer 1
12.	Pulse rate trainer 1
13.	Tacho meter-1

COURSE OUTCOMES (COs)

1.	Ability to experimentally measure industrial process parameters such as flow, level
2.	Ability to experimentally measure industrial process parameters such as temperature, pressure
3.	Ability to experimentally measure industrial process parameters such as viscosity.
4.	Ability to measure and analyze pH, conductivity, UV absorbance and transmittance.
5.	Ability to measure and analyze physiological parameters such as BP, ECG and pulse rate.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course			-	Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	0	0	0	0	0	0	0	0	1	1	0	0	2	0	0
CO2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
CO3	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0
CO4	0	0	0	0		0	0	0	0	0	0	0	0	0	0
CO5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SEMESTER VI

INDUSTRIAL INTERNET OF THINGS

 $\begin{array}{c|c} \mathbf{I} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{array}$

С

3

L

3

COURSE OBJECTIVES

• To educate various embedded processors.

- To impart an adequate knowledge of timers and interrupts.
- To learn embedded C programs.

• To learn simple embedded applications.

• To learn IoT using Arduino/Raspberry Pi /open platform

UNIT I 8-BIT EMBEDDED CONTROLLERS AND C PROGRAMMING

8-Bit Microcontroller – Architecture – Instruction Set and Programming – Programming Parallel Ports – Timers and Serial Port – Interrupt handling – Memory And I/O Devices Interfacing – Programming Embedded Systems in C – Need For RTOS – Priority Based Scheduling Policies.

UNIT II IOT AND ARDUINO PROGRAMMING

ARM Processor – Introduction to the Concept of IoT Devices – IoT Devices Versus Computers – IoT Configurations – Basic Components – Introduction to Arduino – Types of Arduino – Arduino Toolchain – Arduino Programming Structure – Sketches – Pins – Input/Output From Pins Using Sketches – Introduction to Arduino Shields – Integration of Sensors and Actuators with Arduino.

UNIT III BUILDING IoT WITH RASPBERRY PI

Building IOT with RASPERRY PI- IoT Systems - Logical Design using Python – IoT Physical Devices & Endpoints - IoT Device -Building blocks -Raspberry Pi -Board - Linux on Raspberry Pi - Raspberry Pi Interfaces -Programming Raspberry Pi with Python - Other IoT Platforms - Arduino.

UNIT IV IOT COMMUNICATION AND OPEN PLATFORMS

IoT Communication Models and APIs – IoT Communication Protocols – Bluetooth – WiFi – ZigBee – GPS – GSM modules – Open Platform (like Raspberry Pi) – Architecture – Programming – Interfacing – Accessing GPIO Pins – Sending and Receiving Signals Using GPIO Pins – Connecting to the Cloud

UNIT V INDUSTRIAL IOT AND SECURITY

Introduction to the Industrial Internet - Networked Control Systems – Network delay modeling - Architecture and design methodologies for developing IoT application for Networked Control Systems – Example using SCADA system - Software Design Concepts - Middleware IIOT platforms-securing the Industrial Internet- Introduction to Industry 4.0.

TOTAL :45 PERIODS

OUTCOMES:

On completion of the course, the student will be able to:

	CO1	Understand and compare various embedded processors.
ſ	CO2	Design and deploy timers and interrupts.
	CO3	Write embedded C programs.
	CO4	Design simple embedded applications.
ſ	CO5	Design portable IoT using Arduino/Raspberry Pi /open platform

9

9

9

TEXT BOOKS:

1.	Muhammed Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson Education, Second Edition, 2014.
2.	Adrian McEwen, Hakim Cassimally "Designing the Internet of Things", John Wiley & Sons, 2014.
	REFERENCES:
1.	Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design", Elsevier, 2006.
2.	IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
3.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on Approach", VPT, 2014.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course			-	Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-

EI1602	PROCESS CONTROL	L	Т	Р	С
		3	0	0	3
COURSE	OBJECTIVES				

- To familiarize the students with characteristics, selection, sizing of control valves.
- To provide an overview of the features associated with Industrial type PID controller
- To make the students understand the various PID tuning methods.
- To elaborate different types of control schemes such as cascade control, feed-forward control and Model Based control schemes.

UNIT I PROCESS MODELLING AND DYNAMICS

Need for process control – Mathematical Modeling of Processes: Level, Flow, Pressure and Thermal processes – Continuous and batch processes – Self regulation – Servo and regulatory operations – Lumped and Distributed parameter models – Heat exchanger – CSTR – Linearization of nonlinear systems.

12

12

UNIT II FINAL CONTROL ELEMENTS

Actuators: Pneumatic and electric actuators – Control Valve Terminology - Characteristic of Control Valves: Inherent and Installed characteristics - Valve Positioner – Modeling of a Pneumatically Actuated Control Valve – Control Valve Sizing- Standard flow equations for sizing Control Valves – Cavitation and flashing – Control Valve selection.

control –Ratio control, Split range control.

CONTROL ACTIONS

PID CONTROLLER TUNING

MODEL BASED CONTROL SCHEMES

UNIT III

UNIT IV

UNIT V

Boiler drum level control - Introduction to Multi-loop Control Schemes - Control of Heat Exchanger -Multivariable control strategies-Parametric and Nonparametric Models, State space and Transfer Function Representations and their inter relationships-Case study –Distillation column-P&ID diagram

Smith Predictor Control Scheme - Internal Model Controller -- IMC PID controller -- Three- element

Characteristic of ON-OFF, Proportional, Single speed floating, Integral and Derivative controllers -P+I, P+D and P+I+D control modes – Practical forms of PID Controller – PID Implementation Issues:

PID Controller Design Specifications: Criteria based on Time Response and Criteria based Frequency Response - PID Controller Tuning: Z-N and Cohen-Coon methods, Continuous cycling method and Damped oscillation method, optimization methods, Auto tuning - Cascade control - Feed-forward

Bumpless, Auto/manual Mode transfer, Anti-reset windup Techniques - Direct/reverse action

TOTAL :60 PERIODS

12

12

12

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to understand technical terms and nomenclature associated with Process control domain.
CO2	Ability to build models using first principles approach as well as analyze models
CO3	Ability to Design, tune and implement PID Controllers to achieve desired
COS	performance for various processes
CO4	Ability to Analyze Systems and design & implement control Schemes for various Processes.
CO5	Ability to Identify, formulate and solve problems in the Process Control Domain.

TEXT BOOKS

1.	Seborg, D.E., Edgar, T.F. and Mellichamp, D.A., "Process Dynamics and Control", Wiley John
	and Sons, 2 nd Edition, 2003.
2.	Bequette, B.W., "Process Control Modeling, Design and Simulation", Prentice Hall of India, 2004.
3.	Stephanopoulos, G., "Chemical Process Control - An Introduction to Theory and Practice",
	Prentice Hall of India, 2005.

REFERENCES

1.	Coughanowr, D.R., "Process SystemsAnalysis and Control", McGraw - Hill International Edition,
	2004.
2.	Curtis D. Johnson, "Process Control Instrumentation Technology", 8th Edition, Pearson, 2006.
3.	Considine, D.M., Process Instruments and Controls Handbook, Second Edition, McGraw, 1999.
4.	Bela.G.Liptak., "Process Control and Optimization"., Instrument Engineers' Handbook., volume
	2, CRC press and ISA, 2005.
5.	Ramesh C. Panda., T. Thyagarajan., "An Introduction to Process Modelling Identification and
	Control for Engineers" Narosa Publishing house Pvt. Ltd, 2017

Course Outcomes							Outco						Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	2	3	1	1	1	0	0	0	0	0	0	2	2	0	
CO2	1	1	2	1	1	0	0	0	0	0	0	0	2	2	0	
CO3	1	1	2	1	1	0	0	0	0	0	0	0	2	2	0	
CO4	1	2	1	1	1	1	0	0	0	0	0	0	2	2	0	
CO5	1	1	3	1	1	0	0	0	0	0	0	0	2	2	0	

MADDING COUDSE OUTCOMES WITH DDOCDAMME OUTCOMES

EE1671 DIGITAL SIGNAL PROCESSING L Т P С 3 (Common to EEE and EIE) 0 0 3

Objectives

- Signals, systems, sampling techniques and their mathematical representation.
- Analysis of Discrete time systems like Z-transforms, Discrete Time Fourier transform and its applications.
- Discrete Fourier Transformation, Fast Fourier Transformation technique and their computation.
- Filters and their design procedure for digital implementation.
- Digital Signal Processor and its addressing modes.
- UNIT I INTRODUCTION TO SIGNALS AND SYSTEM

Classification of systems: Continuous, discrete, linear, causal, stability, dynamic, recursive, time variance – Classification of signals: continuous and discrete, energy and power, mathematical representation of signals – Spectral density – sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

UNIT – II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, inverse Z-transforms, difference equation - Solution by Z- transform, application to discrete systems – Stability analysis, frequency response – Convolution – Discrete Time Fourier transform, magnitude and phase representation.

UNIT – III | DISCRETE FOURIER TRANSFORM & COMPUTATION

Discrete Fourier Transform- properties, magnitude and phase representation - Computation of DFT: using FFT algorithm – DIT &DIF using radix 2 FFT – Butterfly structure.

UNIT – IV DESIGN OF DIGITAL FILTERS

FIR & IIR filter realization: Parallel & cascade forms – FIR design: Windowing Techniques, Need and choice of windows, Linear phase characteristics – Analog filter design: Butterworth and Chebyshev approximations - IIR Filters: Digital design using Impulse Invariant and Bilinear Transformation, Warping, pre warping.

$\mathbf{UNIT} - \mathbf{V}$ DIGITAL SIGNAL PROCESSORS

Introduction - Architecture - Features - Instruction Set - Addressing Formats - Functional modes Introduction to Commercial Digital Signal Processors.

Total Periods: 45

9

9

9

	Books				G M	Innala	Jria (Dicito	1 Sim	aal Dr	i	ag Dr	incinto		onithn	ns and
					Educa		-	•	•		ocessii	ig Pr	incipie	s, Alg	çoriunn	is and
											nnroa	ch' M	[cGraw	v Hill E	'du 20	13
		-	<u> </u>		Fundan		<u> </u>		-					v 11111 L	au, 20	15.
Refer				un, 1	undun	lenta	<u>15 01 D</u>	ignui c	Jightar	110005	, mg	v 110 y,2	015.			
				Sas	ikala F	C'Dic	rital Si	onal P	rocessi	no' V	ijav Ni	cole/T	MH 20	013		
	. Poorna Chandra S, Sasikala. B, 'Digital Signal Processing', Vijay Nicole/TMH,2013. . Robert Schilling & Sandra L.Harris, 'Introduction to Digital Signal Processing using MATAB',															
	Cengage Learning,2014.															
3. B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford University Press, 2010.																
 B.F.Latin, "Finciples of Signal Processing and Linear Systems", Oxford University Press, 2010. Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with MatLab', CRC Press, 2009. 																
4. Taan S. EIAH, 'Discrete Systems and Digital Signal Processing with MatLab', CRC Press, 2009. 5. SenM.Kuo, Woon-Seng S Gan, 'Digital Signal Processors', Architecture, Implementations &																
5. SenM.Kuo, Woon-Seng S Gan, 'Digital Signal Processors', Architecture, Implementations & Applications', Pearson, 2013.																
6. DimitrisG.Manolakis, Vinay K. Ingle, 'Applied Digital Signal Processing', Cambridge, 2012.																
 Dimitriso Ivialolaxis, villay K. Ingré, Apprée Digital Signal Processing , Cambridge, 2012. Emmanuel C. Ifeachor, 'Digital Signal Processing – A Practical Approach', 2nd Edition, Prentice 																
Hall, 2011.																
Course Outcomes (CO)																
CO1	Acquire knowledge on Signals, systems, sampling techniques & their mathematical															
	repre															
CO2					•		Discrete	e Time	e Syste	ems lik	e Z-tra	ansform	ns, Di	screte	Time	Fourier
					pplicati											
CO3					ormatio											
<u>CO4</u>														entation	l.	
<u>CO5</u>					out Di											
MAP	PING	CO	URS	SE OU	U TCO I	MES	WITH	I PRO	GRA	MME	JUTC	OME	5	-	~	
Cou	rse]	Progra	ım Ou	tcome	S				0		pecific
Outco	omes	-	1.		J	1	-	1		1	•	1_	1		Dutcon	
00	1	a	b	<u>c</u>	<u>d</u>	e	<u>f</u>	g	<u>h</u>	i	J	k	l	1	2	3
<u> </u>		3	2	2 2	1	1	1	1	1	1	1	1	1	3	1	1
<u> </u>		3	2	$\frac{2}{2}$	1	1	1	1	1	1	1	1	1	3	1	1
CC CC		3 3	2	$\frac{2}{2}$	$\frac{2}{2}$	1	1	1	1	1	1	1	1	3	3	2
		3	<u> </u>	<u></u> 1	1	1	1	1	1	1	1	1	1	$\frac{3}{2}$	3	2
CC																

]	EE1672	EMBEDDED SYSTEMS	L	Т	Р	C					
		(Integrated Lab)									
		(Common to EIE and EEE)	3	0	1	4					
COU	RSE OBJEC	TIVES									
•	Building blo	ocks of Embedded System									
•	Introduction	to Embedded processors									
•	Bus communication in processors, Input/output interfacing										
•	Basics of rea	al time operating system									
•	Real-time ap	oplications of an embedded system									
Unit-	I IN	TRODUCTION TO EMBEDDED SYSTEMS				9					
Introc	luction to E	mbedded Systems -Building blocks of Embedded System,	Struc	tural	unit	s in					
Embe	dded process	sor, selection of processor & memory devices- DMA - M	lemory	/ ma	nager	nent					
metho	ods- Timer a	nd Counting devices, Watchdog Timer, Oscillator and Reset	Circu	iits-R	Real 7	Time					
Clock	. Introductior	to a brief study on a typical embedded processor.									
		· · · · · · · · · · · · · · · · · · ·									

EMBEDDED NETWORKING 9 Embedded Networking: Introduction, I/O Device Ports & Buses- Serial Bus communication protocols-RS232 standard – RS422 – RS 485- Inter Integrated Circuits (I2C), Serial Peripheral Interface (SPI), CAN Bus, - USB- Wi-Fi- Bluetooth- Zigbee - need for Device Drivers. **Unit-IV RTOS BASED EMBEDDED SYSTEM DESIGN** 9 Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Pre-emptive and non-pre-emptive scheduling, Task communication shared memory, message passing-, Inter process Communication – synchronization between processessemaphores, Mailbox, pipes, priority inversion, priority inheritance-Polling and interrupt handling mechanism- Overview and comparison of commercial RTOS:VX works- µC/OS-II. Unit-V EMBEDDED SYSTEM APPLICATION AND DEVELOPMENT 9 Case Study of Washing Machine- Automotive Application- Smart card System Application-ATM machine – Digital camera. **TOTAL (L: 45+P: 30):75 PERIODS** 1. Study of Embedded processors: PIC and ARM 2. Toggle pins and make an LED glow. 4. 3 x 3 keypad matrix and display a key 5. Seven-segment Display 6. A/D conversion 7. D/A conversion 9. Interface a DC motor and stepper motor List of Equipment, software tools and compilers: 6. Keil-compiler TEXT BOOKS Peckol, "Embedded system Design", John Wiley & Sons, 2010. 1. 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013 Shibu. K.V, "Introduction to Embedded Systems", Second Edition, McGraw Hill, 2017. 3. 4. Embedded Systems Fundamentals with Arm Cortex M Based Microcontrollers: A Practical Approach Paperback – 1 March 2017 PIC microcontroller and Embedded systems Using Assembly and C for PIC18, second edition, 5. 2021. 90

CAN Bus, - USB- Wi-Fi- Bluetooth- Zigbee - need for Device Drivers.

INTRODUCTION TO EMBEDDED PROCESSORS

RS232 standard - RS422 - RS 485- Inter Integrated Circuits (I2C), Serial Peripheral Interface (SPI),

Unit-III

List of Programming exercises:

- 3. Buzzer alarm

Unit-II

- 8. Generation of a PWM signal
- 10. Interfacing a temperature sensor
- 11. ESP-8266 wifi MCU for IOT applications.

- 1. PIC 16F877a demonstration board with peripherals
- 2. ARM cortex board with peripherals
- 3. Desktops with advanced Pentium processors
- 4. Proteus software tool
- 5. Micro c -compiler

Embedded Networking: Introduction, I/O Device Ports & Buses- Serial Bus communication protocols-

. Ra																
	Kamal	-	bedde	d Sys	stems-	Archi	tectur	e, Pro	ogram	ming,	Dest	ign', S	econd	1 Ed	ition	, M
	aw Hill, 1			1 0							(7.1		x 1			
	R. Sarma															
	<u>nmy No</u> n-Way H														•	
	ib Mall													009.		
Course O				syster	115 1 11	corya	.nu i i		I Cal	SOIL L	uucai	1011, 200	07.			
	ility to u	· /		e basi	c bloc	ks of	an em	bedde	ed sys	tems.						
	ility to u										ning					
CO3 Ab	ility to a	cquire	know	ledge	about	the en	mbeda	led ne	etwork	, proto	ocols.					
	ility to u						•	<u> </u>								
	ility to s	00			2		<u> </u>					10				
APPIN	<u>G COU</u>	RSE (DUTC	OME	5 WI	THP	ROG	KAM	ME (JUTC	OME		Due		C	.:e:
Cours	e				Prog	gram	Outco	omes					Prog	ram Outco	-	
Outcom		b		d		f	a	h	i	;	k	1	1	2	ines	3
	<u>a</u>		c		e	1	g	n 1	1	j	<u>к</u> 1	-				-
CO1	2	1	2	1	2	1	1	1	1	1	1	3	1	2		1
CO2	2	1	1	2	3	1	1	1	1	1	1	3	1	2		1
CO3	2	1	2	2	3	1	1	1	3	3	3	3	1	2		1
CO4	2	1	2	3	3	3	2	1	1	1	1	3	2	1		1
CO5	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3 2	
															l	
	1														1	-
DS1302	OBJ	ECT (INTE	GRA	TED	LAB)	L	P	Τ	C
			(Coi	nmon	to EF	EE, EI	E & I	CE)					3	0	2	4
)bjective _				~	-		_									
	lyze the		-	•			-			-			-			-
	come fai		with t	he fun	idame	ntal c	oncep	ts in C	JOP I	ike en	capsu	lation,	Inheri	tance	e and	ł
•	orphism		• ,	1 .					1	1.1.1						
	ign an o	•	oriente	ed syst	em, C	jUI co	ompor	ients a	and m	ultithr	eaded	proces	ses as	s per	neec	lS
1	ecificatio		с 1	· · ·	. 1		1			•		\mathbf{a}	1 D			
-	ovide a S	trong	tounda	ation I	or adv	vanceo	1 prog	ramm	ing us	sing O	bject	Oriente	ea Pro	ogran	nmin	g
Conce	-	A FUN	IDAM	ENT	ALS											9 -
rogramn						iome	– Ohi	ect O	riente	d Pro	oramı	ning C	oncer	nts- I	Tisto	
ava - Jav																
ara sav	a Gullw	0100		u viiit	court	Ju	, a 50			. uciul	·• 1	unng	COIL	, chui	<i>,</i> ,,,	

Lab Component:

1. Write a Java program that prints all real solutions to the quadratic equation $ax^2 + bx + c = 0$. Read in a, b, c and use the quadratic formula. If the discriminate b^2 -4ac is negative, display a message stating

that there are no real solutions.

2. The Fibonacci sequence is defined by the following rule: The first two values in the sequence are 1 and 1. Every subsequent value is the sum of the two values preceding it. Write a Java program that uses both recursive and non recursive functions to print the nth value in the Fibonacci sequence

UNIT II OBJECT-ORIENTED PROGRAMMING, INTERFACES AND INHERITANCE

9 + 6

Working with Objects - Implementing Classes - Object Construction - Static Variables and Methods – Packages - Nested Classes – Abstract Class - Interfaces – Static, Default and Private Methods – Local and Anonymous Classes – Inheritance – Extending a class - Object: The Cosmic Superclass – Wrapper classes.

Lab Component:

1. Write a java program to create an abstract class named Shape that contains an empty method named number of Sides (). Provide three classes named Trapezoid, Triangle and Hexagon such that each one of the classes extends the class Shape. Each one of the classes contains only the method number of Sides () that shows the number of sides in the given geometrical figures

2. Write a Java program that counts the number of objects created by using static variable

UNIT III EXCEPTIONS, COLLECTIONS AND STREAMS

Exceptions – exception hierarchy – throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files.

Lab Component:

- 1. Write a Java program to make frequency count of words in a given text
- 2. Write a Java program to implement a Queue using user defined Exception Handling (also make use of throw, throws.).

UNIT IV CONCURRENT PROGRAMMING AND GUI PROGRAMMING

9+6

9 + 6

Threads – Multithreaded Programming – Thread Creation – Life Cycle – Thread Priorities -Synchronization of Threads - Event Handling: Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. Swing: Introduction, Limitations of AWT, MVC Architecture, Components, Containers, Exploring Swing Components - Handling menus, Layout Manager – Layout Management types – Border, Grid, Flow, Card and Grid Bag.

Lab Component:

1. Write a Java program that creates three threads. First thread displays "Good Morning" everyone second, the second thread displays "Hello" every two seconds and the third thread displays "Welcome" every three seconds.

2. Write a java Program to create a window when we press

- i. M or m the window displays Good Morning
- ii. A or a the window displays Good After Noon
- iii. E or e the window displays Good Evening N or n the window displays Good Night

UNIT V JAVA SERVER TECHNOLOGIES AND NETWORK PROGRAMMING

9+6

Introduction to Servlet - Servlet Life Cycle - The Servlet API - Developing and Deploying Servlets - Exploring Deployment - Networking Basics – Exploring java.net classes and interfaces, InetAddress,

TCP/IP Client and Server Sockets – Cookies and Datagrams.

Lab Component:

1.Develop a program for executing the remote command using TCP Socket

2. Create a GUI program in java with the following components.

- i. A frame with Flow layout.
- ii. Add the following components on to the frame.
 - a) Two Text Field
 - b) A button with the label display
- iii. Allow the user to enter data into the JTextField
- iv. When the button is clicked paint the frame by displaying the data entered in the JTextField Allow the user to properly close the frame

TOTAL : 45 + 30 PERIODS

Τ	TEXT BOOKS 1. Herbert schildt , "The complete reference", 11 th Edition, Tata Mc Graw Hill, New Delhi. 2018.																
1	.]	Herbert so	hildt	, "Th	e com	plete	refere	ence",	11 th I	Editio	n, Tat	a Mc	Graw	' Hill,	New D	Delhi. 2	018.
2		Cay S. Ho															
3	.]	Paul Deite	el, Ha	rvey l	M. De	itel, "	Java	How	to Pro	gram	", 11 th	¹ Editi	on, P	earsor	n Educa	ation, 2	018.
R		ERENCE															
1	-	T. Budd, ' 2009.					-			-	-						
2			aniel Liang, "Introduction to Java programming", 7 th Edition, Pearson education, 2010.														
3		C Xavier, "Java Programming – A Practical Approach", Tata McGraw-Hill Edition, 2011.															
4		K. Arnold and J. Gosling, "The Java programming language", 3 rd Edition, Pearson Education, 2000															
		2000.															
	OURSE OUTCOMES																
C	O1 Understand the fundamental ideas behind the object-oriented approach to programming																
C	CO2	O2 Inculcate concepts of inheritance to create new classes from existing one & Design the classes needed given a problem specification															
C	Develop and implement java programs with exception handling and various I/O Streams																
	204	A mode level sy	nchro	nizati	ion co	nstru	cts	-				-	-				-
C	CO5	To know	w the	conce	ept of	event	hand	ling u	sed in	n GUI	and a	access	ing da	atabas			
	(Course					Prog	gram	Outco	omes					U	ram Sp outcom	
	Οι	utcomes	a	b	с	d	e	f	g	h	i	j	k	1	1	2	3
		CO1	2	1	1	2	2	2	1	0	2	1	1	1	2	1	1
		CO2	1	1	2	2	1	1	2	0	2	1	1	1	2	1	2
		CO3	2	2	2	2	2	2	1	0	2	2	2	1	1	1	2
		CO4	1	3	2	2	2	2	1	0	1	1	2	1	3	1	3
		C05	2	3	3	2	3	2	1	0	2	1	2	2	1	1	2

EI16	508 INSTRUMENTATION SYSTEM DESIGN LABORATORY	L	Т	Р	C								
		0	0	4	2								
	OBJECTIVES:												
• 7	To obtain adequate knowledge in design of various signal conditioning circu	its aı	nd										
i	instrumentation systems.												
• 7	To impart design knowledge of controller, control valve and transmitter.												
• 7	To acquire the knowledge of piping diagram of industrial standard												
• 7	To make the students aware of industry project, planning and scheduling.												
	LIST OF EXPERIMENTS:												
1.	Design of Instrumentation amplifier.												
2.	Design of active filters – LPF, HPF and BPF												
3.	Design of regulated power supply and design of V/I and I/V converters.												
4.	Design of linearizing circuits and cold–junction compensation circuit for thermocouples.												
5.	Design of signal conditioning circuit for strain gauge and RTD.												
6.	Design of orifice plate and rotameter.												
7.	Design of Control valve (sizing and flow-lift characteristics)												
8.	Design of PID controller (using operational amplifier / microprocessor)												
9.	Design of a multi-channel data acquisition system												
10.	Design of multi range DP transmitter												
11.	Piping and Instrumentation Diagram – case study.												
12.	Preparation of documentation of instrumentation project and project schedul case study. (Process flow sheet, instrument index sheet and instrument specif scheduling, installation procedures and safety regulations).												
	TOTAL: 6	0 PE	RIO	DS									
	OUTCOMES:												
1	Ability to design of signal conditioning signality												

1.	Ability to design of signal conditioning circuits
2.	Ability to understand instrumentation systems.
3.	Ability to design controller, control valve and transmitter.
4.	Be able to design and draw the piping diagram for industrial application projects.
5.	Be able to design the multi-channel data acquisition system and transmitter

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	3	3	3	0	1	0	0	1	0	0	2	2	2	3	
CO2	3	3	3	3	0	1	0	0	1	0	0	2	3	2	3	
CO3	3	3	3	3	0	2	0	0	1	0	0	2	3	2	3	
CO4	3	3	3	3	0	1	0	0	1	0	0	3	3	3	3	
CO5	3	3	3	3	0	1	0	0	1	0	0	3	3	3	3	

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.NO	List of Equipment
1.	Sufficient number of Monolithic Instrumentation amplifier, Operational amplifiers, IC 7805
	and resistors, diodes, capacitors
2.	Linear control valve, ON/OFF control valve, Air regulator, Rotameter, Pump 1 No. each
3.	Sufficient number of IC 741, CRO, Bread board, Signal generator (PID) Microprocessor kit
	with ADC and DAC section
4.	Any Process station (Temperature or Level) with Corresponding sensors, Data acquisition card,
	and Storage device (microcontroller/microprocessor)
5.	Flow process station with DP transmitter
6.	Loop analyzer
7.	Thermocouple & RTD
8.	Bonded strain gauge, Loads
9.	orifice plate

	EI1609	PROCESS CONTROL LABORATORY	L	Т	Р	С						
-		TROCESS CONTROL LABORATORY	0	0	4	2						
		E OBJECTIVES										
•	1	mentally verify the process control concepts on the selected process cor										
•	-	t theoretical and practical skills in process identification and PID control	ller t	uning	5							
•		the students aware of basic and advanced control scheme.										
1	LIST OF EXPERIMENTS											
	1 Simulation of lumped /distributed parameter system 2 Image: Simulation of lumped /distributed parameter system											
2	2 Mathematical model of a typical industrial process using nonparametric identification methods											
3 Tuning of PID Controller for mathematically described processes												
4	4 PID Enhancements (Cascade and Feed-forward Control Schemes)											
5	Design and Implementation of Multi loop PID Controller on the simulated model of a typical											
6	Simulation of PID position and velocity forms											
7	Characteri	Characteristics of Pneumatically Actuated Control Valve (with and without Positioner).										
8	Study and	control of flow process using Compact Flow Control Unit.										
9	Control of	Level and Pressure using Process Control Training Plant										
10	Design and	l implementation of ON/OFF Controller for the Temperature Process.										
11	Design and	l implementation of Interacting and non-interacting system										
13	Analysis o	f MIMO systems										
14	Design and Industrial	l implementation of Multi-loop PID schemes on the simulatedmodel of Process	a Ty	pical								
		TOTAL: 60 Pl	ERIC	DDS								
	OUTCO	MES:										
1.	Ability	to understand and analyze process control engineering problems.										
2.	Able to	build dynamic models using input – output data of a process										
3.	Ability	to working with real time control loops (flow/level/temperature/pressur	re)									
		95										

4.	Get exposed to simulation tools such as MATLAB/LABVIEW/ASPEN
5.	Ability to learn and implement simple adaptive and model based control schemes
	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1.	Flow process station with all accessories
2.	Analog / Digital PID controller
3.	Control value setup (with position for varying ΔP across the value)
4.	Flow station with all accessories
5.	Level process station with all accessories
6.	Temperature process station with all accessories
7.	Pressure process station with all accessories
8.	Personal computer-15 nos
9.	MATLAB software
10.	Two tank system with following accessories.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course					Prog	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	0	3	0	3	0	0	0	0	1	1	1	2	1	3	
CO2	2	0	3	0	3	0	0	0	0	1	1	1	3	0	3	
CO3	2	0	3	0	3	0	0	0	0	1	1	1	0	3	3	
CO4	2	0	3	0	3	0	0	0	0	1	1	1	0	1	1	
CO5	2	0	3	0	3	0	0	0	0	1	1	1	3	3	0	

SEMESTER VII

EI1701	COMPUTER CONTROL OF PROCESSES	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

• To represent the linear time invariant System in discrete State Space form.

• To analyze the controllability, observability and stability of a Discrete timeSystem.

• To estimate model parameters from input/output measurements

• To Design Digital Controllers

• To Design Multi-loop and Multivariable Controllers for multivariable system

UNIT I BASICS OF PLC AND PROGRAMMING (LADDER)

PLC: Evolutions of PLCs – Programmable Controllers – Architecture, I/O modules – Basics of PLC programming – Ladder Logic – Relay type instructions – Timer/Counter instructions – Program control instructions – Data manipulation and math instructions – Programming Examples

0

9

UNIT II DISCRETE STATE-VARIABLE TECHNIQUE

State equation of discrete data system with sample and hold – State transition equation – Methods of computing the state transition matrix – Decomposition of discrete data transfer functions — State diagrams of discrete data systems — Controllability and observability of linear time invariant discrete data system–Stability tests of discrete-data system

UNIT III DIGITAL CONTROLLER DESIGN

Modified of z-transform – Pulse transfer function – Digital PID controller – Dead-beat controller and Dahlin's controller – IMC - Smith Predictor.

UNIT IV MULTI-LOOP REGULATORY CONTROL

Multi-loop Control - Introduction – Process Interaction – Pairing of Inputs and Outputs. The Relative Gain Array (RGA) – Properties and Application of RGA - Multi-loop PID Controller – Biggest Log Modulus Tuning Method – De-coupler.

UNIT V MULTIVARIABLE REGULATORY CONTROL

Introduction to Multivariable control –Multivariable PID Controller – Modern predictive controller – Fuzzy Logic Controller – Case Studies:- Distillation Column, CSTR and Four-tank system.

TOTAL : 45 PERIODS

9

9

9

COURSE OUTCOMES At the end of the course, the student should have the:																
CO1	Ability		-				-									
CO2	Ability	to bui	ld mo	dels fi	rom ir	nput-o	utput	data								
CO3	Ability		-	-												
CO4	Ability	to des	ign m	ulti-lo	op co	ntrolle	er for i	multi-	variat	olesyst	tems.					
CO5	Ability	to des	ign m	ultiva	riable	contro	oller f	or mu	lti-var	iables	ystem	IS.				
	Г ВООК															
1.	Stephanopoulos, G., "Chemical Process Control -An Introduction to Theory and Practice", Prentice Hall of India, 2005.															
				,												
2.	Sigurd Skogestad, Ian Postlethwaite, "Multivariable Feedback Control:															
	FERENCES Gonal M "Digital Control and State Variable Methods" Tata Mc GrawHill 2003															
1.	Gopal, M., "Digital Control and State Variable Methods", Tata Mc GrawHill, 2003.															
2.		Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, "Process Dynamics andControl", Wiley John and Sons, 3rd Edition, 2010.														
3.		Wiley John and Sons, 3rd Edition, 2010. P. Albertos and A. Sala, "Multivariable Control Systems An Engineering Approach", Springer														
5.		lag, 2006.														
4.	Bequette		V., "Pı	rocess	Cont	rol Mo	odelin	g, De	sign a	nd Sir	nulati	on", P	rentic	e Hall	ofIndi	a,
	2008.															
5.	Thomas							esigni	ng Pr	ocesse	es and	l Cont	rolsy	stems f	for Dy	namic
	Perform								A 3 43							
MAP	PING CO	JUKS	E OU		MES	WII	н рк	UGK		IE OU		MES		Duca	ram Sp	aaifia
C	ourse					Prog	gram	Outco	omes					0	-	
Ou	tcomes		_			1		1	-				_		utcom	
		a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
(CO1	3	2	1	2	0	0	0	0	0	0	0	0	2	2	0
CO2 3 2 1 2 0 0 0 0 0 0 0									2	2	0					
(CO3	3	2	1	2	0	0	0	0	0	0	0	0	2	2	0
(CO4	3	2	1	2	0	0	0	0	0	0	0	0	2	2	0
(CO5	3	2	1	2	0	0	0	0	0	0	0	0	2	2	0

APPLIED SOFT COMPUTING

 L
 T
 P
 C

 3
 0
 0
 3

9

9

9

9

9

COURSE OBJECTIVES

• Develop the skills to gain a basic understanding of neural network theory.

• Understand the advanced neural networks and its applications

• Understand fuzzy logic and reasoning to handle and solve engineering problem

• To provide comprehensive knowledge of fuzzy logic control to real time systems

• Introduce bio inspired algorithms from an engineering perspective

UNIT I ARTIFICIAL NEURAL NETWORK (ANN)

Introduction – Biological neuron – Artificial neuron – Neuron model – Supervised and unsupervised learning- Single layer – Multi layer feed forward network – Learning algorithm- Back propagation network.

UNIT II NEURAL NETWORKS FOR CONTROL

Feedback networks – Discrete time Hopfield networks – Transient response of continuous time system – Applications of artificial neural network - Neuro controller for inverted pendulum- Introduction to Neural networks in machine learning & Deep learning

UNIT III FUZZY SYSTEMS

Classical sets – Fuzzy sets – Fuzzy relations – Fuzzification – Defuzzification – Fuzzy rules – Membership function – Knowledge base – Decision-making logic – Introduction to neuro fuzzy system- Adaptive fuzzy system.

UNIT IV APPLICATION OF FUZZY LOGIC SYSTEMS

Fuzzy logic control: Home heating system - liquid level control – Washing machine – Automotive – inverted pendulum –fuzzy PID control, Fuzzy based motor control.

UNIT V EVOLUTIONARY COMPUTATION AND SWARM INTELLIGENCE

Genetic algorithms: Introduction-genetic algorithm steps-selection, crossover, and mutation, Swarm Intelligence - Particle swarm optimization(PSO) - Firefly algorithm(FA) - Bacterial foraging optimization(BFO)

TOTAL (L: 45+T: 0): 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the Ability:

CO1	To understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations								
CO2	To Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications								
CO3 To Comprehend the fuzzy logic and the concept of fuzziness involved in various system									
005	fuzzy set theory.								
CO4	To apply Fuzzy logic concepts to engineering problems								
CO5	To understand basics of Evolution algorithm and swarm intelligence								
,	TEXT BOOKS								
1. L	aurance Fausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson								
E	ducation, 1992.								
2. T	imothy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.								
3. S	S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition, 2nd								

	Edition, 2															
	REFER	ENCE	S													
1.	Simon Ha	ıykin,	'Neur	al Net	works	', Pea	rson E	Educat	ion, 20	003.						
2.	John Yen	& Rez	za Lan	igari, '	Fuzzy	y Logi	c – In	tellige	nce C	ontrol	& Inf	òrmat	ion', F	Pearson	1	
	Education	n, New	Delhi	i, 2003	3			-								
3.	M.Gen an	and R,Cheng, Genetic algorithms and Optimization, Wiley Series in Engineering														
	Design an	nd Aut	Automation, 2000.													
4.	Hagan, D	gan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012.														
5.	N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford, 2013.															
6.	William				<u> </u>			<u> </u>			-		Hand	book	CRC 1	Press,
	2011.		ŕ													, i i i i i i i i i i i i i i i i i i i
7.	Kalyanmo	oy Del	o,"Mu	ılti-Ol	ojectiv	e Opt	imizat	ion us	ing Ev	volutio	onary .	Algori	thms"	,Wile	v	
	MAPPIN	•			•	-			-			-		, , ,	2	
						_								Prog	ram Sp	oecific
	Course					Prog	gram	Outco	omes					U	utcom	
0	utcomes	а	b	с	d	е	f	a	h	i	i	k	1	1	2	3
				-		-	1	g	11	1	J	ĸ	1	_	-	_
	CO1	3	3	2	2	2	-	-	-	-	-	-	1	2	2	1
	CO^2	3	3	2	2	2	-	-	-	-	-	-	1	2	2	1

Course					Prog	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	2	2	2	-	-	-	-	-	-	1	2	2	1	
CO2	3	3	2	2	2	-	-	-	-	-	-	1	2	2	1	
CO3	3	3	3	3	2	-	-	-	-	-	-	1	3	2	1	
CO4	2	2	3	3	2	-	-	-	-	-	-	1	3	2	1	
CO5	2	2	3	2	2	-	-	-	-	-	-	1	2	2	1	

EI1703	INDUSTRIAL DATA NETWORKS	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

- To educate on the basic concepts of data networks
- To introduce the basics of internetworking and serial communications
- To provide details on HART and Field buses
- To educate on MODBUS, PROFIBUS and other communication protocol
- To introduce industrial Ethernet and wireless communication

Unit-I DATA NETWORK FUNDAMENTALS

Networks hierarchy and switching – Open System Interconnection model of ISO - Data link control protocol - Media access protocol - Command / response - Token passing -CSMA/CD, TCP/IP

9

9

9

Unit-II INTERNET WORKING and RS 232, RS485

Bridges - Routers - Gateways - Standard ETHERNET and ARCNET configuration special requirement for networks used for control - RS 232, RS 485 configuration Actuator Sensor (AS) – Interface, Devicenet.

Unit-IIIHART AND FIELD BUS

Introduction - Evolution of signal standard - HART communication protocol - HART networks - HART commands - HART applications - Fieldbus - Introduction - General Fieldbus architecture

- Basic requirements of Fieldbus standard - Fieldbus topology - Interoperability - Interchangeability -Introduction to OLE for process control (OPC). 9

Unit-IV MODBUS AND PROFIBUS PA/DP/FMS AND FF

MODBUS protocol structure - function codes - troubleshooting Profibus, Introduction, Profibus protocol stack, Profibus communication model - communication objects - system operation troubleshooting - review of foundation fieldbus - Data Highway.

Unit-V INDUSTRIAL ETHERNET AND WIRELESS COMMUNICATION

Industrial Ethernet, Introduction, 10 Mbps Ethernet, 100 Mbps Ethernet - Radio and wireless communication, Introduction, components of radio link - radio spectrum and frequency allocation radio MODEMs-Introduction to wireless HART and ISA100.

TOTAL :45 PERIODS

9

COURSE OUTCOMES At the end of the course, the student should have the

- Ability to define basic concepts of data communication and its importance. CO1
- CO₂ Ability to explain the various internetworking devices involved in industrial networks

Ability to explain the various serial communication used in process industries. CO3

- CO4 Ability to illustrate, compare & explain the working of HART and Field bus used in process digital communication.
- CO5 Ability to summarize the operation of MODBUS, PROFIBUS protocol & its applications. **TEXT BOOKS**
- Steve Mackay, Edwin Wrijut, Deon Reynders, John Park, Practical Industrial Data Networks Design, Installation and Troubleshooting' Newnes Publication, Elsevier First Edition, 2004.
- William Buchanan, Computer Buses, CRC Press, 2000. 2.

3. Behrouz Forouzan, Data Communications & Networking, 3RD edition, Tata McGraw hill, 2006. REFERENCES

- Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, Prentice Hall of India Pvt. Ltd., 1. 5th Edition. 2011.
- 2. Theodore S Rappaport, Wireless Communication: Principles and Practice, Prentice Hall of India 2nd Edition, 2001.

William Stallings, Wireless Communication & Networks, Prentice Hall of India, 2nd Edition, 2005. 3. MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes	5			Program Specific Outcomes											
	а	a b c d e f g h i j k l												2	3
CO1	0	0	0	3	3	0	0	0	0	0	0	0	2	2	0
CO2	0	0	0	3	3	0	0	0	0	0	0	0	2	2	0
CO3	0	0	0	3	3	0	0	0	0	0	0	0	2	2	0
CO4	0	0	0	3	3	0	0	0	0	0	0	0	2	2	0
CO5	0	0	0	3	3	0	0	0	0	0	0	0	2	2	0

L	Т	Р	С
0	0	4	2

OBJECTIVES:

EI1708

	To impart practical skills in
1.	Programming of PLC and DCS.
2.	Sensor data acquisition, data processing and visualization
3.	Interfacing the various field devices with PLC
	LIST OF EXPERIMENTS
1.	Study of PLC field device interface modules (AI,AO,DI,DO modules)
2.	Programming Logic Gates Function in PLC
3.	Implementing Mathematical Operations in PLC
4.	Programming Jump-to-subroutine & return operations in PLC
5.	PLC Exercises:- 1. Traffic Light Control and Filling/Draining Control Operation
6.	PLC Exercise: 1. Reversal of DC Motor Direction 2. ON/OFF Controller for Thermal Process
7.	PLC based control of Level Process
8.	On-line Monitoring and Control of a Pilot plant using DCS
9.	PLC based Control of Flow Process
10.	Study of Foundation Fieldbus /IOT/Wireless HART Enabled Transmitter
11.	Simulation and implementation of Fuzzy logic Control
12.	Simulation and implementation of ANN Control
	TOTAL: 60 PERIODS

OUTCOMES:

1.	Ability to understand and Programming of PLC, SCADA and DCS
2.	Ability to working with industrial automation system
3.	Be able to design and implement control schemes in PLC & DCS
4.	Ability to interface field devices with PLC & DCS

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outco	omes					Progra Ou	am Sp itcom	
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	2	1	-	1	-	-	2	-	-	2	2	2	1
CO2	2	2	2	1	-	1	-	-	2	-	-	2	2	2	1
CO3	2	2	2	1	-	2	-	-	2	-	-	2	2	2	1
CO4	2	2	2	1	-	1	-	-	2	-	-	2	2	2	1
CO5	2	2	2	1	-	1	-	-	2	-	-	2	2	2	1

PROFESSIONAL ELECTIVE – I (V SEMESTER)

	PROFESSIONAL ELECTIVE – I (V SEMESTER)				
CS1501	COMPUTER NETWORKS	L	Т	P	С
		3	0	0	3
Objectives					
• To u	nderstand the protocol layering and physical level communication	and	to an	alyze	e the
perfo	rmance of a network.				
• To an	halyze the contents of Data Link layer packet, based on the layer concept	pt.			
• To le	arn the functions of network layer and the various routing protocols.				
 To fa 	miliarize the functions and protocols of the Transport layer.				
• To ki	now about different application layer protocols.				
UNIT - I	INTRODUCTION AND PHYSICAL LAYER				9
Networks -	Network Types - Protocol Layering - TCP/IP Protocol suite - OSI	I Mo	del –		
Physical La	yer: Performance - Transmission media - Switching - Circuit	t-swi	tched	C	01
Networks –	Packet Switching.				
UNIT - II	DATA-LINK LAYER & MEDIA ACCESS				9
	- Link-Layer Addressing - DLC Services - Data-Link Layer Protocol				
	dia Access Control – Wired LANs: Ethernet – Wireless LANs – Intro	oduct	ion –	C	02
IEEE 802.11	, Bluetooth – Connecting Devices.				
UNIT - III	NETWORK LAYER	1 1	r		9
	yer Services – IPV4 Addresses – Forwarding of IP Packets – Network – University Addresses – Protocola – Multicasting			C	02
	P, ICMP v4 – Unicast Routing Algorithms – Protocols – Multicasting	g Das	sics -	C	03
IF VO Addres	ssing – IPV6 Protocol.				
UNIT - IV	TRANSPORT LAYER				9
	- Transport Layer Protocols - Services - Port Numbers - User	Data	oram		,
	Transmission Control Protocol-Congestion Control Mechanisms-			C	04
	Ismission Protocol.	buca			01
control 11ta					
UNIT - V	APPLICATION LAYER				9
	HTTP – FTP – Email – Telnet – SSH – DNS – SNMP- Internet Multime	dia.		CO	
	Tota	l Per	iods:	4	1 5
Text Books :					
1.	Behrouz A. Forouzan, Data Communications and Networking, Fifth	Editi	on TM	H, 2	013
2.	William Stallings, Data and Computer Communications, Tenth Edition	on, P	earson		
	Education, 2014.				
Reference B					
•	Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, I	Fifth	Editic	n,	
U	Kaufmann Publishers Inc., 2012				
	Mir, Computer and Communication Networks, Second Edition, Prenti-				
-	r Lin, Ren-Hung Hwang and Fred Baker, Computer Networks: An Ope	en So	urce A	ppro	ach,
McGraw	Hill Publisher, 2011				
	Kurose, Keith W. Ross, Computer Networking, A Top-Down Approac	1 5	· ·	.1	

Internet, Sixth Edition, Pearson Education, 2013.

Course Outc	omos	$\overline{(\mathbf{CO})}$														
Course Outc		· /	l the	haria	lavo	ra fu	notion	in in	00000	utor	noturo	rlza o	nd to	ovol	unto 1	tha
COI			t the core a		•	18, 1u	netion	IS III	comp	uter	netwo	IKS a	liu to	eval	uale	me
	1					1.	Cl	C		1 /	.1					
CO2			l the b					from	one n	ode to	o anoth	ner.				
CO3	Analy	yse an	d desi	gn roi	iting a	algorit	hms.									
CO4	Unde	rstand	l desig	gn goa	ls of C	Conne	ctionle	ess an	d Con	nectio	on orie	ented p	orotoc	ols.		
CO5	Unde	rstand	l the w	orkin	g of v	arious	appli	cation	layer	proto	cols.					
Ν	MAPP	ING	COUI	RSE (DUTC	OME	CS WI	TH P	ROG	RAM	ME C	DUTC	OME	S		
Course			Progr	am O	utcor	nes			Р	rogra	m Sp	ecific	Outco	omes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1	
CO2	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1	
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1	
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1	
CO5	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1	

EC1008	MEMS AND NEMS	L	Т	Р	C
		3	0	0	3
OBJECTIV	/ES				
• To in	ntroduce the concepts of micro and nano electromechanical devices				
• To k	now the fabrication process of Microsystems				
• To k	now the design concepts of micro sensors and micro actuators				
• To in	ntroduce the concepts of quantum mechanics and nano systems				
UNIT I	INTRODUCTION TO MEMS AND NEMS				9
New trends	in Engineering and Science: Micro and Nano scale systems. Intr	oducti	on to		
Design of N	IEMS and NEMS, Overview of Nano and Micro electromechanic	al Sys	tems,	CC)1
Application	s of Micro and Nanoelectromechanical systems, Materials for 1	MEMS	s and		
NEMS: Sili	con, silicon compounds, polymers, metals.				
UNIT II	MEMS FABRICATION TECHNOLOGIES				9
Photolithog	raphy, Ion Implantation, Diffusion, Oxidation, CVD, PECVD,	Sputte	ering,		
Etching tech	nniques: Dry and wet etching, electrochemical etching, Micromach	ining:	Bulk	CC)2
Micromachi	ning, Surface Micromachining, LIGA.				
UNIT III	MICRO SENSORS				9

	sors: Design of Acoustic wave sensors, Vibratory gyroscope, Capacitive nsors, Case study: Piezoelectric energy harvester	CO3
UNIT IV	MICRO ACTUATORS	9
Design of	Actuators: Actuation using thermal forces, Actuation using shape memory	
Alloys, Act	uation using piezoelectric crystals, Actuation using Electrostatic forces, Case	CO4
Study: RF S	Switch.	
UNIT V	NANO DEVICES	9
Atomic Str	uctures and Quantum Mechanics, Shrodinger Equation, ZnO nanorods based	CO5
NEMS devi	ce: Gas sensor	005
	TOTAL : 45 I	PERIODS

TEXT BOOKS

- 1. Marc Madou, —Fundamentals of Microfabrication, CRC press 1997.
- 2. Stephen D. Senturia, Micro system Design, Kluwer Academic Publishers, 2001.

REFERENCE BOOKS

- 1. Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata Mcraw Hill, 2002.
- 2. Chang Liu, -Foundations of MEMSI, Pearson education India limited, 2006,
- 3. Sergey Edward Lyshevski, —MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002.

COURSE OUTCOMES

Upon completion of the course, students will be able to

-	
	Understand the fundamentals and working principles of micro systems and
CO1	microelectronics.
CO2	Understand the both micro fabrication and manufacturing techniques.
CO3	Acquire knowledge about micro sensors.
CO4	Study the design and force analysis of micro actuators.
	Study about the basic concepts of nano electronics with various devices and also
CO5	discusses with its applications.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	gram	Outco	omes					-	ram Sp utcom	pecific les
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	2	2	2	1	3	2	1	1	1	2	2	3	2	1	2
CO2	2	2	2	1	2	3	2	1	1	1	2	3	3	3	1
CO3	2	3	3	2	2	2	1	1	1	2	3	2	2	2	3
CO4	3	2	3	3	3	1	3	1	1	2	2	2	3	2	2
CO5	2	3	3	2	3	2	2	1	1	1	2	2	2	2	2

EE1552	ELECTRIC AND HYBRID VEHICLES	L	Т	P	С
		3	0	0	3
COURSI	E OBJECTIVES				
•	To obtain the knowledge about Conventional Electrical Vehicles				
•	To obtain the knowledge about Hybrid Electric Drive and Trains				
٠	To obtain the knowledge about Electric propulsion Unit				
•	To obtain the knowledge about Energy storage devices and sizing of	of the d	rive sys	tem	
•	To obtain the knowledge about Energy Management Techniques				
Unit-I	CONVENTIONAL VEHICLES				12
Introduct	ion to Hybrid Electric Vehicles: History of hybrid and electric vehic	les, soc	ial and		
supplies.	ental importance of hybrid and electric vehicles, impact of modern of Basics of vehicle performance, vehicle power source characterization istics, mathematical models to describe vehicle performance				У
Unit-II	HYBRID ELECTRIC DRIVE-TRAINS				12
	cept of hybrid traction, introduction to various hybrid drive-train to	pologie	s, powe	r flow	
	hybrid drive-train topologies, fuel efficiency analysis. Electric Driv		-		
control in					
		flow co	ontrol i	n eleci	
electric tr	action, introduction to various electric drive-train topologies, power	flow co	ontrol i	n elec	IIC
electric tr		flow co	ontrol i	n elec	
electric tr drive-trai Unit-III Introduct DC Moto	 action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration 	figuratio	on and con and con	contro	12 ol of of
electric tr drive-trai Unit-III Introduct DC Moto	ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration and control of Switch Reluct	figuratio	on and con and con	contro	12 ol of of
electric tr drive-trai Unit-III Introduct DC Moto Permaner	ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration and control of Switch Reluct	figuratio	on and con and con	contro	12 l of of rive
electric tr drive-trai	 action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Confor drives, Configuration and control of Induction Motor drives, configuration and control of Switch Reluctation for drives. 	figuration guration ance M s, Batter s, Batter capac ridization	on and control of and control of and control of an and control of a co	control ontrol ves, d d ener sed en	12 l of rive 12 gy ergy
electric tr drive-trai	 action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles and its analysis, Fuel Cell based energy storage and its analysis, Super nd its analysis, Flywheel based energy storage and its analysis, Hybrid and storage devices. Matching the electric machine and the internal combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems 	figuration guration ance M s, Batter s, Batter capac ridization	on and control of and control of and control of an and control of a co	control ontrol ves, d d ener sed en	12 of rive 12 gy ergy t Sizin
electric tr drive-trai Unit-III Introducti DC Moto Permaner system ef Unit-IV Introducti storage an energy sto the propu Commun Unit-V	action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Confordrives, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts in Magnet Motor drives, Configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles nd its analysis, Fuel Cell based energy storage and its analysis, Supe nd its analysis, Flywheel based energy storage and its analysis, Hybr orage devices. Matching the electric machine and the internal combu lsion motor, sizing the power electronics, selecting the energy storage lsion motor, sizing the power electronics, selecting the energy storage ENERGY MANAGEMENT STRATEGIES	figuration guration ance M s, Batter s, Batter cridization ustion e ge techn	on and control of and control of and control of a control	control ontrol ves, d d ener sed en fferen [CE),	12 l of rive 12 gy ergy Sizin
electric tr drive-trai Unit-III Introduct DC Moto Permaner system ef Unit-IV Introduct storage an energy sto the propu Commun Unit-V Introduct	action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Confordrives, Configuration and control of Induction Motor drives, configuration and control of Switch Reluctation in Magnet Motor drives, Configuration and control of Switch Reluctation ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles no its analysis, Fuel Cell based energy storage and its analysis, Supe and its analysis, Flywheel based energy storage and its analysis, Hybrid orage devices. Matching the electric machine and the internal combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems ENERGY MANAGEMENT STRATEGIES ion to energy management strategies used in hybrid and electric vehicles	figuration guration ance M s, Batter r Capace ridization ustion e ge techn icles, cl	on and co otor dri otor dri citor bas on of di ngine (nology, assifica	d ener sed en fferen ICE),	12 l of rive 12 gy ergy Sizin
electric tr drive-trai	 action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles and its analysis, Fuel Cell based energy storage and its analysis, Supe nd its analysis, Flywheel based energy storage and its analysis, Hybriorage devices. Matching the electric machine and the internal combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems ENERGY MANAGEMENT STRATEGIES ion to energy management strategies used in hybrid and electric vehicles and its energy management strategies used in hybrid and electric vehicles and its energy management strategies. 	figuration guration ance M s, Batter s, Batter r Capace ridization ustion e ge techn icles, cl agemen	on and control of an and control of an and control of an and control of a control o	d ener sed en fferen ICE),	12 of rive 12 gy ergy t Sizin <u>12</u> of
electric tr drive-trai	ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Confordrives, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles and its analysis, Fuel Cell based energy storage and its analysis, Super and its analysis, Flywheel based energy storage and its analysis, Hybrid and electric combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems ENERGY MANAGEMENT STRATEGIES ion to energy management strategies, comparison of different energy management strategies. Case Studies: Design	figuration guration ance M s, Batter s, Batter r Capace ridization ustion e ge techn icles, cl agemen	on and control of an and control of an and control of an and control of a control o	d ener sed en fferen ICE),	12 of rive 12 gy ergy t Sizin <u>12</u> of
electric tr drive-trai	 action, introduction to various electric drive-train topologies, power n topologies, fuel efficiency analysis. ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles and its analysis, Fuel Cell based energy storage and its analysis, Supe nd its analysis, Flywheel based energy storage and its analysis, Hybriorage devices. Matching the electric machine and the internal combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems ENERGY MANAGEMENT STRATEGIES ion to energy management strategies used in hybrid and electric vehicles and its energy management strategies used in hybrid and electric vehicles and its energy management strategies. 	figuration guration ance M s, Batter s, Batter r Capace ridization ustion e ge techn icles, cl agemen	on and control of an and control of an and control of an and control of a control o	d ener sed en fferen ICE),	12 of rive 12 gy ergy t Sizin <u>12</u> of
electric tr drive-trai	ELECTRIC PROPULSION UNIT ion to electric components used in hybrid and electric vehicles, Confordrives, Configuration and control of Induction Motor drives, configuration and control of Switch Relucts ficiency. ENERGY STORAGE & SIZING THE DRIVE SYSTEM ion to Energy Storage Requirements in Hybrid and Electric Vehicles and its analysis, Fuel Cell based energy storage and its analysis, Super and its analysis, Flywheel based energy storage and its analysis, Hybrid and electric combulsion motor, sizing the power electronics, selecting the energy storage ications, supporting subsystems ENERGY MANAGEMENT STRATEGIES ion to energy management strategies, comparison of different energy management strategies. Case Studies: Design	figuration guration ance M s, Batter s, Batter or Capace ridization ustion e ge techn icles, cl agement n of a H	on and control of an and control of an and control of an and control of a control o	d ener sed en fferen ICE),	12 of rive 12 gy ergy Sizin Sizin 12 of

COURSE OUTCOMES

At the end of the course, the student should have the:

- CO1 Ability to understand about Commercial Vehicles
- CO2 Ability to get knowledge about Hybrid and Electric Trains
- CO3 Ability to understand about Electric Propulsion Unit
- CO4 Ability to understand the principles of Energy storage and drive systems
- CO5 Ability to nderstand about Energy Management Techniques

TEXT BOOKS

1. Iqbal Hussein,,"Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003

REFERENCES

- 1.Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric
and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 20042.Image: Align end of the second sec
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003
- **3.** Ebrahimi, Kambiz M., Ehsani, Mehrdad, Gao, Yimin, Longo, Stefano, Modern electric, hybrid electric, and fuel cell vehicles,CRC Press,2018

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes	Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1 2 3				
CO1	3	3	2	2	1	-	-	-	-	-	-	-	2	-	-		
CO2	3	3	2	2	1	-	-	-	-	-	-	-	2	1	-		
CO3	3	3	3	3	1	-	-	-	-	-	-	-	3	2	-		
CO4	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-		
CO5	3	3	3	2	1	-	-	-	-	-	-	-	2	2	-		

EI1511	ANALYTICAL INSTRUMENTATION	L	Т	Р	С
		3	0	0	3
COURSE OF	BJECTIVES				

• To understand the theory and operational principles of instrumental methods for identification and quantitative analysis of chemical substances by different types of spectroscopy.

- To impart fundamental knowledge on gas chromatography and liquid chromatography.
- To integrate a fundamental understanding of the underlining principles of physics as they relate to specific instrumentation used for gas analyzers and pollution monitoring instruments.
- To impart knowledge on the important measurement in many chemical processes and laboratories handling liquids or solutions.
- To understand the working principle, types and applications of NMR and Mass spectroscopy.

UNIT I SPECTROPHOTOMETRY 9 Spectral methods of analysis - Beer-Lambert law - UV-Visible spectroscopy - IR Spectrophotometry -FTIR spectrophotometry – Attenuated total reflectance flame photometers - Atomic absorption spectrophotometry – Fluorescence Spectrophotometer Flame emission and atomic emission photometry - Construction, working principle, sources detectors and applications. 9 UNIT II **CHROMATOGRAPHY** General principles – chromatographic behaviour of solutes – quantitative determination – Techniques by chromatographic bed shape- Column chromatography-Planar Chromatography - Paper Chromatography-Thin layer Chromatography-Applications - Techniques by physical state of mobile phase- Gas chromatography - Sources - Detectors - Liquid chromatographs - sources- detectors-Applications – High-pressure liquid chromatographs – sources-detectors- Applications- Techniques by separation mechanism-Ion exchange chromatography-size-exclusion chromatography-Applications. INDUSTRIAL GAS ANALYZERS AND POLLUTION MONITORING 9 UNIT III **INSTRUMENTS** Gas analyzers – Oxygen, NO2 and H2S types, IR analyzers, thermal conductivity detectors, analysis based on ionization of gases. Air pollution due to carbon monoxide, hydrocarbons, nitrogen oxides, sulphur dioxide estimation - Dust and smoke measurements. UNIT IV | pH METERS AND DISSOLVED COMPONENT ANALYZERS Principle of pH measurement, glass electrodes, hydrogen electrodes, reference electrodes, selective ion electrodes, ammonia electrodes, biosensors, dissolved oxygen analyzer - Sodium analyzer - Silicon analyzer – Water quality Analyzer NUCLEAR MAGNETIC RESONANCE AND MASS SPECTROMETRY 9 UNIT V NMR - Basic principles - Continuous and Pulsed Fourier Transform NMR spectrometer - Electron spin Resonance spectroscopy - Mass Spectrometry - Sample system - Ionization methods - Mass analyzers – Types of mass spectrometry. TOTAL : 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to understand the fundamental principles of selective analytical instruments used in
	medical diagnosis, quality assurance & control and research studies.
COD	Ability to assess and suggest a suitable analytical method for a specific purpose, and evaluate
CO2	sensitivity, important sources of interferences and errors, and also suggest alternative analytical
	methods for quality assurance.
CO3	Ability to critically evaluate the strengths and limitations of the various instrumental methods.
CO4	Ability to develop critical thinking for interpreting analytical data.
CO5	Ability to understand the working principle, types and applications of NMR and Mass
	spectroscopy

TEXT BOOKS

1.	Khandpur, R.S., "Handbook of Analytical Instruments", Tata McGraw-Hill publishing Co.
	Ltd., 2nd Edition 2007.
2.	Ewing, G.W., "Instrumental Methods of Chemical Analysis", McGraw-Hill, 5th Edition
	reprint 1985. (Digitized in 2007).
3.	Liptak, B.G., "Process Measurement and Analysis", CRC Press, 5th Edition, 2015
4.	NPTEL lecture notes on, "Modern Instrumental methods of Analysis" by
	Dr.J.R. Mudakavi, IISC, Bangalore.

REFERENCES

1.	Willard, H.H., Merritt, L.L., Dean, J.A., Settle, F.A., "Instrumental methods of analysis",
	CBS publishing & distribution, 7th Edition, 2012.
2.	Braun, R.D., "Introduction to Instrumental Analysis", Pharma Book Syndicate, Singapore,
	2006.
3.	Robert E. Sherman., "Analytical Instrumentation", Instruments Society of America, 1996.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes			Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	0	0	0	3	2	2	0	0	0	0	0	0	2	2	0
CO2	0	0	0	3	2	2	0	0	0	0	0	0	2	2	0
CO3	0	0	0	3	2	2	0	0	0	0	0	0	2	2	0
CO4	0	0	0	3	2	2	0	0	0	0	0	0	2	2	0
CO5	0	0	0	3	2	2	0	0	0	0	0	0	2	2	0

EI1512	MODERN CONTROL THEORY	L	Т	Р	С
		3	0	0	3

- To explain the concepts of basic and modern control system for the real time analysis and design of control systems.
- To explain the concepts of state variables analysis.
- To study and analyze non-linear systems.
- To analyze the concept of stability for nonlinear systems and their categorization.
- To apply the comprehensive knowledge of optimal theory for Control Systems.

UNIT I MATHEMATICAL PRELIMINARIES AND STATE VARIABLE ANALYSIS

Fields, Vectors and Vector Spaces – Linear combinations and Bases – Linear Transformations and Matrices – Scalar Product and Norms – Eigen values, Eigen Vectors and a Canonical form representation of Linear systems – The concept of state – State space model of Dynamic systems – Time invariance and Linearity – Non uniqueness of state model – State diagrams for Continuous-Time State models – Existence and Uniqueness of Solutions to Continuous-Time State Equations – Solutions of Linear Time Invariant Continuous-Time State Equations – State transition matrix and properties. Complete solution of state space model due to zero input and due to zero state.

9

9

9

9

UNIT II CONTROLLABILITY AND OBSERVABILITY

General concept of controllability – Controllability tests, different state transformations such as diagnolization, Jordon canonical forms and Controllability canonical forms for Continuous-Time Invariant Systems – General concept of Observability – Observability tests for Continuous-Time Invariant Systems – Observability of different State transformation forms.

UNIT III STATE FEEDBACK CONTROLLERS AND OBSERVERS

State feedback controller design through Pole Assignment, using Ackkermans formula– State observers: Full order and Reduced order observers.

UNIT IV NON-LINEAR SYSTEMS

Introduction – Non Linear Systems – Types of Non-Linearities – Saturation – Dead-Zone – Backlash – Jump Phenomenon etc; Linearization of nonlinear systems, Singular Points and its types – Describing function–describing function of different types of nonlinear elements, – Stability analysis of Non-Linear systems through describing functions. Introduction to phase-plane analysis, Method of Isoclines for Constructing Trajectories, Stability analysis of nonlinear systems based on phase-plane method.

UNIT V STABILITY ANALYSIS

Stability in the sense of Lyapunov, Lyapunov's stability, and Lypanov's instability theorems – Stability Analysis of the Linear continuous time invariant systems by Lyapunov second method – Generation of Lyapunov functions – Variable gradient method – Krasooviski's method.

TOTAL : 45 PERIODS

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	To perform state variables analysis for any real time system.
CO2	Apply the concept of optimal control to any system.
CO3	Able to examine a system for its stability, controllability, and observability.
CO4	Implement basic principles and techniques in designing linear control systems.
CO5	Formulate and solve deterministic optimal control problems in terms of performance indices.

TEXT BOOKS

1.	M. Gopal, Modern Control System Theory by – New Age International – 1984
2.	Ogata. K, Modern Control Engineering by– Prentice Hall – 1997
3.	N K Sinha, Control Systems- New Age International – 3rd edition

REFERENCES

1.	Donald E. Kirk, Optimal Control Theory an Introduction, Prentice – Hall Network series – First edition.
2.	William L Brogan, Modern Control theory, Pearson, Third Edition, 1990.
3.	Richard Dorf, Robert Bishop, Modern Control Systems, Pearson, Global Edition, 2017.

Course Outcomes					Pro	gram	Outo	comes						ram Sj Dutcon	pecific 1es
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	2	1	2	0	0	0	0	1	0	0	2	2	0	1
CO2	1	2	1	1	2	0	0	0	1	0	0	2	2	0	1

CO3	2	2	1	1	1	0	0	0	1	0	0	2	2	0	2
CO4	2	1	1	1	1	0	0	0	1	0	0	2	2	0	2
CO5	1	2	1	1	1	0	0	0	1	0	0	2	2	0	1

EI1513	INSTRUMENTATION STANDARDS	L	Т	Р	С
		2	2	0	3

• To impart basic knowledge on Instrumentation standards

UNIT I STANDARDS ORGANIZATION

Standards: Introduction International and National Standards organization: IEC, ISO, NIST, IEEE, ISA, API, BIS, DIN, JISC and ANSI.

API: Process Measurement and Instrumentation (APIRP551): recommended practice for installation of the instruments – flow, level, temperature, pressure - Process Instrument and Control (API RP554): performance requirements and considerations for the selection, specification, installation and testing of process instrumentation and control systems

UNIT II ISA STANDARDS

Documentation of Measurement and Control, Instruments and System (ISA 5): 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 - General Requirements for Electrical Equipment in Hazardous Location (ISA 12): 12.2, 12.4, 12.24, 12.29 – Instrument Specification Forms (ISA20): – Measurement Transducers (ISA37)

UNIT III

ISA STANDARDS - CONTROL VALVE AND ACTUATOR

Control Valve Standards (ISA75): 75.01, 75.04, 75.05, 75.7, 75.11, 75.13, 75.14, 75.23, 75.24, 75.26. Valve Actuator (ISA 96): 96.01, 96.02, 96.03, 96.04.

UNIT IV ISA STANDARDS - FOSSIL AND NUCLEAR POWER PLANTS

Fossil Power Plant Standards (ISA 77): 77.14, 77.22, 77.30, 77.41, 77.42, 77.44, 77.60, 77.70. Nuclear Power Plant Standards (ISA67): 67.01, 67.02, 67.03, 67.04, 67.06.

UNIT V BS, ISO, IEC, & ANSI

Measurement of Fluid Flow by means of Orifice Plates (ISO 5167/ BSI042) IEC 61131-3 – Programmable Controller – Programming Languages – Specification for Industrial Platinum Resistance Thermometer Sensors (BSI904) – International Thermocouple Reference Tables (BS4937) – Temperature Measurement Thermocouple (ANSIC96.1)

TOTAL :45 PERIODS

9

9

9

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to understand the role of standards organization
CO2	Ability to interpret and follow different standards while carrying out installation of sensors, transmitters, Industrial automation systems, PLC programming, documentation, equipment selection in hazardous area and instrument specification forms
CO3	Ability to understand and follow different standards while performing control valve sizing, actuator sizing and orifice sizing etc
CO4	Ability to interpret and follow different standards while carrying out monitoring and control of fossil fuel power plants and nuclear power plants.
CO5	Ability to understand BS, ISO, IEC, & ANSI

TEXT BOOKS

1.	API Recommended Practice 551, "Process Measurement Instrumentation", American Petroleum
	Institute, Washington, D.C., 1st Edition, May 1993
2.	API Recommended Practice 554, "Process Instrumentation and Control – 3 parts", American Petroleum Institute, Washington, D.C., 1st Edition, October 2008.
3.	ISA standard 5, "Documentation of Measurement and Control Instruments and Systems", ISA, North Carolina, USA
4.	ISA standard 12, "Electrical Equipment for Hazardous Locations", ISA, North Carolina, USA.
5.	ISA standard 20, "Instrument Specification Forms", ISA, North Carolina, USA
6.	ISA standard 37, "Measurement Transducers", ISA, North Carolina, USA.
7.	ISA standard 75, "Control Valve Standards", ISA, North Carolina, USA.
8.	ISA standard 96, "Valve Actuator", ISA, North Carolina, USA.
9.	ISA standard 77, "Fossil Power Plant Standards", ISA, North Carolina, USA
10.	ISA standard 67, "Nuclear Power Plant Standards", ISA, North Carolina, USA
11.	BS EN 60584-1, "Thermocouples - EMF specifications and tolerances", British Standard, 2013

Course	Program Outcomes	Program Specific
--------	------------------	------------------

Outcomes													Outcomes			
	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	1	1	0	0	2	2	0	0	0	0	0	2	2	0	
CO2	1	0	1	0	2	2	2	0	0	0	0	0	2	2	0	
CO3	1	1	2	0	2	2	1	0	0	0	0	0	2	2	0	
CO4	1	1	1	0	1	2	2	0	0	0	0	0	2	2	0	
CO5	1	1	2	0	2	1	2	0	0	0	0	0	2	2	0	

PROFESSIONAL ELECTIVE – II (VI SEMESTER)

EI1621	PROCESS DATA ANALYTICS	L	Т	Р	С
		3	0	0	3
COURSI	E OBJECTIVES				
•	Experimental Design				
•	Linear Regression Analysis				
•	Linear Model Selection and Regularization				
•	Classification				

• Process Identification, Performance Monitoring and Soft Sensor Design

•

Unit-I INTRODUCTION

Introduction to Process data analytics and Statistical learning - Review of Linear Algebra Concepts – Review of Probability & Statistics - Design of experiments - Industrial case studies on factorial experiments.

9

9

9

9

Unit-II REGRESSION

Linear Regression:- Simple Linear Regression, Multiple Linear Regression -K-nearest neighbours regression – Practical Consideration in the Regression Model - Validation methods to assess model quality:-The validation set approach, Leave-One-Out Cross Validation, k-Fold Cross Validation – Bias-variance Trade-off for k-Fold Cross Validation.-**Python Programming**

Unit-III LINEAR MODEL SELECTION & REGULARIZATION

Subset Selection: - Best Subset Selection, Step-wise Selection and Choosing the Optimal Model – Shrinkage Methods: - LASSO, Ridge regression, Elastic nets – Dimension reduction Methods:- Principal Components Regression, Partial Least Squares. -**Python Programming**

Unit-IV SUPERVISED LEARNING WITH REGRESSION AND CLASSIFICATION TECHNIQUES

Logistic regression– Linear Discriminant Analysis - Quadratic Discriminant Analysis –Regression & Classification Trees – Support Vector Machines - Random forests, Bagging and boosting -Deep Learning. .-Python Programming

Unit-V	APP	LICAT	ION	5											9
Process d Monitorir (PLS) for Python P	ng - Pri r soft-se	ncipal ensor d	comp	onent	ts ana	lysis	(PCA) for	Proce	ss Me	onito	ring a	nd Part	ial Lea	st Squa
												[ΓΟΤΑΙ	L :45 P	ERIOD
COURSI	E OUT	COME	ES												
At the end	1		-												
CO1	Trout	le to ap pleshoo	ting												
CO2	Be ab	le to se	elect t	he rig	ht cho	oice of	f regr	essior	n metł	nod fo	or a gi	iven ap	pplicati	on.	
CO3	Be ab	le to se	elect t	he rig	ht cho	pice of	f class	sificat	ion m	nethod	l for a	a giver	n applic	cation.	
CO4		Be able to systematically carryout System Identification, Process & Performance													
CO5		Monitoring. Be able to cohesively analyze alarm data, process data and process connectivity information													
REFERF	ENCES														
1.	Intro	h Jame luction tics, 20	to Sta										Texts	in	
2.		n Alpa													
3.		ias A. I vsis, Sp								lgorit	hms	for Int	elligent	t Data	
4.		K. Tan								ion –	Theo	ory and	l Practi	ce, CRO	C Press,
5.		g, B. a Applica		,	,				smen	t of C	ontro	ol Loop	ps: The	ory	
6.	Fan Y		ing D	uan, S	Sirish	L Sha	ah, To	ongwe		en, Ca	pturi	ng Co	nnectiv	ity and	Causali
							• •	·		OCR	AM	AF OI	UTCO	MFS	
					200			<u> </u>							
Cours					Pro	gram	Outo	comes	;				U	ram Sp Dutcom	
Outcon	nes –	ı b	c	d	e	f	g	h	i	j	k	l	1	2	3
			-		1	I					1	~			1 1
CO1	2	2 3	0	0	0	0	1	1	0	0	1	2	2	0	1

CO3	2	1	0	0	0	0	1	1	0	0	1	2	2	0	1
CO4	2	3	0	0	0	0	1	1	0	0	1	2	2	0	1
CO5	2	3	0	0	0	0	1	1	0	0	1	2	2	0	1

EE1731	SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL	L	Т	Ρ	(

Objectives

To impart knowledge about the following topics:

- The concept of system identification and adaptive control.
- Black-box approach-based system identification.
- Batch and recursive identification.
- Computer Controlled Systems.
- Design concept for adaptive control schemes.

UNIT - I	NON-PARAMETRIC METHODS

Non-parametric methods - Transient analysis - frequency analysis - Correlation analysis - Spectral analysis - Input signal design for identification.

UNIT - II PARAMETRIC METHODS

Least squares estimation - Analysis of the least squares estimate - Best linear unbiased estimate - Model parameterizations - Prediction error methods.

UNIT - III RECURSIVE IDENTIFICATION METHODS

The recursive least square method - Model validation - Model structure determination, Introduction to closed loop system identification of the Cell - series and parallel connections, maximum power point tracking, Applications.

UNIT - IV ADAPTIVE CONTROL SCHEMES

Introduction – Auto-tuning of PID controller using relay feedback approach – Types of adaptive control, Gain scheduling, Model reference adaptive control, Self–tuning controller – CO4 Design of gain scheduled adaptive controller – Applications of gain scheduling.

UNIT - V	MODEL-REFERENCE ADAPTIVE SYSTEM (MRAS) and SELF-	9
	TUNING REGULATOR (STR)	
CTD Dolo	ale compart design Indirect STD and direct STD MDAC MIT rule I yearup ou	

STR – Pole placement design – Indirect STR and direct STR, MRAC - MIT rule – Lyapunov theory – Relationship between MRAC and STR.

Total Periods: 45

С

9

9

9

9

CO5

3

Text Books:

- 1. T. Soderstrom and PetreStoica, System Identification, Prentice Hall International (UK) Ltd. 1988.
- 2. Karl J. Astrom and Bjorn Witten mark, Adaptive Control, Addison-Wesley, 2016.

Reference Books:

- 1. L. Ljung, System Identification Theory for the User, 2nd Edition, Pearson education, 1999.
- 2. K. S. Narendra and A. M. Annaswamy, Stability Adaptive Systems, Dover Publications, 2005.
- 3. H. K. Khalil, Nonlinear Systems, Pearson education, 3rd Edition, 2002.
- 4. William S.Levine, "Control Systems Advanced Methods, the Control Handbook,2nd Edition, CRC Press, 2010.
- 5. S. Sastry and M. Bodson, Adaptive Control, Prentice-Hall, 1988.

Course Outcomes (CO)

Course	outcomes (CO)
CO1	Ability to understand various system identification techniques and features of adaptive
	control like STR and MRAC.
CO2	Ability to understand the concept of system identification and adaptive control.
CO3	Ability to understand about Black-box approach-based system identification.
CO4	Ability to get knowledge about batch and recursive identification, Ability to design concept
	for adaptive control schemes.
CO5	Ability to study about computer-controlled systems.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes			Program Specific Outcomes													
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1	
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3	
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3	
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3	
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3	
EI1622		A	DVA	NCEI	D INS	TRU	MEN	TAT	ION S	SYST	EMS		L	Τ	Р	С
													3	0	0	3

COURSE OBJECTIVES

•	To make the students review the instruments used for measurement of basic process parameters like level, flow, pressure and temperature.
•	To explore the various types of analyzers used in industrial applications.
•	To make the students to understand the requirement of safety instrumented system, standards and risk analysis techniques
•	To make students familiarize with Instrumentation standards such as BS1042, ISA 75, ISA 84 and ISA 88.
•	To make students familiarize with Instrumentation Symbols, Abbreviations and Identification for Instruments, Process Flow diagrams, Instrument Loop diagrams, Instrument Hookup diagrams and Piping and Instrumentation Diagrams.

UNIT I	MEASUREMENT OF PROCESS PARAMETERS	9
Review the	various Measurement techniques of temperature, pressure, flow and level	– application -
1	111 1 1 1	

selection of sensors– calibration methods.

UNIT II

INSTRUMENTS FOR ANALYSIS

Ion selective electrodes: Gas & Liquid Chromatography - Oxygen analyzers for gas and liquid - CO, CO2, NO and SO Analyzers- Hydrocarbon and HS Analyzers – Dust Analyzers, smoke Analyzers, Toxic gas Analyzers and radiation monitoring.

UNIT III

SAFETY INSTRUMENTATION

Introduction to Safety Instrumented Systems - Hazards and Risk - Process Hazards Analysis (PHA)-Safety Life Cycle - Control and Safety Systems - Safety Instrumented Function - Safety Integrity Level (SIL) – Selection, Verification and Validation.

UNIT IV

INSTRUMENTATION STANDARDS

9

9

9

Instrumentation Standards - significance of codes and standards - overview of various types -Introduction of various Instrumentation standards – review, interpretation and significance of specific standards - examples of usage of standards on specific applications.

UNIT V

DOCUMENTATION IN PROCESS INDUSTRIES

9

Block Diagram of a Typical Process – Instrumentation Symbols, Abbreviations and Identification for Instruments: - Mechanical Equipment, Electrical Equipment, Instruments and Automation Systems -Process Flow Diagram (PFD) – Piping and Instrumentation Diagram (P&ID) -Instrument Lists and Specification - Logic Diagrams - Instrument Loop Diagrams - Instrument Hookup Diagrams -

Location Plans for Instruments - Cable Routing Diagrams – Typical Control / Rack Rooms Layout – Vendors Documents and Drawings

TOTAL (L: 45): 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Able to understand the instrumentation behind flow, level, temperature and pressure measurement
CO2	Able to acquire basic knowledge on the various types of analyzers used in typical industries.
CO3	Able to understand the role of Safety instrumented system in the industry.
CO4	Able to explain Standards for applying Instrumentation in Hazards Locations.
CO5	Able to design, develop, and interpret the documents used to define instruments and control

TEXT BOOKS

1.B.G.Liptak, "Instrumentation Engineers Handbook (Process Measurement &
Analysis)", Fourth Edition, Chilton Book Co, CRC Press, 2005.

REFERENCES

1.	Swapan Basu, "Plant Hazard analysis and Safety Instrumentation systems" Academic Press,
	2016
2.	Al.Sutko,Jerry.D.Faulk, "Industrial Instrumentation", Delmar publishers, 1996.
3.	Paul Gruhn, P.E., CFSE and Harry Cheddie, P.E., "Safety Instrumented Systems: Design,
	Analysis, and Justification", 2nd Edition, ISA 2006.
4.	Safety - ANSI/ISA84.00.01-2004, Part 1: Framework, Definitions, System Hardware and
	Software Requirements; ANSI/ISA84.00.01-2004, Part 2: Functional Safety: Safety
	Instrumented Systems for the Process Industry Sector; ANSI/ISA84.00.01-2004, Part 3:
	Guidance for the Determination of the Required Safety Integrity Levels-Informative.
5.	Standards - ANSI/ISA-75.01.01 -2002 (60534-2-1 Mod): Flow Equations for Sizing control
	Valves; ISA84 Process Safety Standards and User Resources, Second Edition, ISA, 2011;

ISA88 Batch Standards and User Resources, 4th Edition, ISA, 2011

6. Documentation Standards - ANSI/ISA5.4-1991 - Instrument Loop Diagrams; ANSI/ISA5.06.01- 2007 - Functional Requirements Documentation for Control Software Applications; ANSI/ISA20- 1981 - Specification Forms for Process Measurement and Control Instruments, Primary Elements, and Control Valves.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes				Program Specific Outcomes											
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	2	0	2	2	0	0	1	0	0	1	1	2	3	1	2
CO2	2	0	2	2	0	0	1	0	1	1	1	2	3	2	1
CO3	2	0	2	2	0	0	1	0	0	1	1	2	3	1	1
CO4	2	0	2	2	0	0	1	1	0	1	1	2	2	3	1
CO5	2	0	2	2	0	0	1	1	1	1	1	2	2	3	1

EE1853

MICROCONTROLLER BASED SYSTEM DESIGN

 T
 P
 C

 0
 0
 3

L

3

Objectives

UNIT - I

To impart knowledge about the following topics:

- Architecture and programming model of PIC microcontroller.
- Interrupts and timers in PIC microcontroller.
- Various communication buses for data transfer and I/O interfacing.
- Architecture and programming model of ARM processor.
- ARM Organisations and embedded ARM applications.

INTRODUCTION TO PIC MICROCONTROLLER

Introduction to PIC Microcontroller; PIC 16C6x and PIC16C7x Architecture, Pipelining -Program Memory considerations, Register File Structure, Instruction Set, Addressing modes, Simple Operations.

UNIT - II INTERRUPTS AND TIMER

PIC micro controller Interrupts; External Interrupts, Interrupt Programming; Loop time subroutine Timers, Timer Programming; Front panel I/O, Soft Keys, State machines and key switches, Display of Constant and Variable strings.

UNIT - III PERIPHERALS AND INTERFACING

9

9

I ² C Bu	s for Peripherals Chip Access: Bus operation; Bus subroutines; Serial EEPROM; Analog	
to Digi	tal Converter; Digital to Analog converter; UART- Baud rate selection; Data handling	CO3
circuit-	Initialization; LCD and keyboard Interfacing; Sensor Interfacing.	
UNIT ·	IV INTRODUCTION TO ARM PROCESSOR	9
Archite	cture, ARM programmer's model, ARM Development tools, Memory Hierarchy ,ARM	
Assemt systems	bly Language Programming, Simple Examples, Architectural Support for Operating S.	CO4
UNIT ·	V ARM ORGANIZATION	9
Executi	Pipeline ARM Organization; 5-Stage Pipeline ARM Organization; ARM Instruction on; ARM Implementation; ARM Instruction Set; ARM coprocessor interface; ctural support for High Level Languages; Embedded ARM Applications.	CO5
Text B		45
1.	Peatman, J.B., "Design with PIC Micro Controllers" Pearson Education, 3rd Edition, 2004.	
	Furber, S., "ARM System on Chip Architecture" Addison Wesley trade Con	nputer
	Publication, 2 nd edition, 2015.	1
Refere	nce Books:	
1.	Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey ,Prentice Hall of 2007.	India,
Course	Outcomes (CO)	
CO1	Ability to understand the concepts of Architecture of PIC microcontroller	
CO2	Ability to acquire knowledge on Interrupts and timers.	
CO3	Ability to understand the importance of Peripheral devices for data communication a understand the basics of sensor interfacing	and to
CO4	Ability to acquire knowledge in Architecture of ARM processors	
CO5	Ability to acquire knowledge on ARM Organization in embedded ARM application.	
005	Tomy to dequite knowledge on Their organization in embedded Their appreadon:	

Course Outcomes					Pro	gram	Outc	omes					-	gram Sj Outcom	-
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	3	3	3	2	1	1	1	2	1	3	2	3	3
CO2	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO3	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO4	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3
CO5	3	3	3	3	3	2	1	1	1	2	1	3	3	3	3

EI623	DIGITAL IMAGE PROCESSING	L	Т	Р	С
		3	0	0	3

- To get exposed to simple image enhancement techniques in Spatial and Frequency domain
- To learn concepts of degradation function and restoration techniques
- To study the image segmentation and representation techniques
- To become familiar with image compression and recognition methods

UNIT I DIGITAL IMAGE FUNDAMENTALS	9
Steps in Digital Image Processing - Components - Elements of Visual Perception	n – Image
Sensing and Acquisition - Image Sampling and Quantization - Relationships between pi	
image fundamentals - RGB, HSI models, Two-dimensional mathematical preliminaries, 2D,	transforms
- DFT, DCT.	
UNIT II IMAGE ENHANCEMENT	9
Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatia	l Filtering-
Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier	Transform–
Smoothing and Sharpening frequency domain filters - Ideal, Butterworth and Gauss	sian filters,
Homomorphic filtering, Color image enhancement.	
UNIT III IMAGE RESTORATION	9
Image Restoration - degradation model, Properties, Noise models - Mean Filters	s – Order
Statistics - Adaptive filters - Band reject Filters - Band pass Filters - Notch Filters -	– Optimum
Notch Filtering – Inverse Filtering – Wiener filtering	
UNIT IV IMAGE SEGMENTATION	9
Edge detection-Gradient methods-I-II order edge detectors, Edge linking via Hough transform	m —
Thresholding - Region based segmentation - Region growing - Region splitting and merging	g —
Morphological processing- erosion and dilation, Segmentation by morphological watersheds	– basic
concepts – Dam construction – Watershed segmentation algorithm.	
UNIT V IMAGE COMPRESSION AND RECOGNITION	9
Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding	, JPEG &
MPEG standard- Boundary representation, Boundary description, Fourier Descriptor, Region	nal
Descriptors – Topological feature, Texture - Patterns	
TOTAL : 45 PERI	ODS

COURSE OUTCOMES

At the end of the course, the student should have the Ability:

CO1	Know and understand the basics and fundamentals of digital image processing, such as
	digitization, sampling, quantization, and 2D-transforms.
CO2	Operate on images using the techniques of smoothing, sharpening and enhancement.

CO3	Understand the restoration concepts and filtering techniques.
C04	Learn the basics of segmentation, features extraction, compression and recognition methods for color models.
CO5	Understand different methods of compressing an image for effective storage and retrieval

TEXT BOOKS

1.	Rafael C. Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson, Third Edition, 2010.
2.	Anil K. Jain, 'Fundamentals of Digital Image Processing', Pearson, 2002.

REFERENCES

1.	Kenneth R. Castleman, 'Digital Image Processing', Pearson, 2006.
2.	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, 'Digital Image Processing using
	MATLAB', Pearson Education, Inc., 2011.
3.	D,E. Dudgeon and RM. Mersereau, 'Multidimensional Digital Signal Processing', Prentice Hall
	Professional Technical Reference, 1990.
4.	William K. Pratt, 'Digital Image Processing', John Wiley, New York, 2002
5.	Milan Sonka et al 'Image processing, analysis and machine vision', Brookes/Cole, Vikas
	Publishing House, 2nd edition, 1999

Course Outcomes		Program Outcomes												Program Specific Outcomes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	1	2	2	-	-	-	-	1	-	-	1	3	2	1	
CO2	3	1	2	2	-	-	-	-	1	-	-	1	3	2	1	
CO3	3	1	2	2	-	-	-	-	1	-	-	1	3	2	1	
CO4	3	1	2	2	-	-	-	-	1	-	-	1	3	2	1	
CO5	3	1	2	2	-	-	-	-	1	-	-	1	3	2	1	

EI1624	FIBRE OPTICS AND LASER INSTRUMENTS	L	Т	Р	С
		3	0	0	3

•

- To expose the students to the basic concepts of optical fibres and their properties
- To provide adequate knowledge about the Industrial applications of optical fibres
- To expose the students to the Laser fundamentals
- To provide adequate knowledge about Industrial application of lasers
 - To provide adequate knowledge about holography and Medical applications of Lasers
- Unit-I OPTICAL FIBRES AND THEIR PROPERTIES

Construction of optical fiber cable: Guiding mechanism in optical fiber and Basic component of optical fiber communication, –Principles of light propagation through a fibre: Total internal reflection, Acceptance angle (θ a), Numerical aperture and Skew mode, –Different types of fibres and their properties: Single and multimode fibers and Step index and graded index fibers,– fibre characteristics: Mechanical characteristics and Transmission characteristics, – Absorption losses – Scattering losses – Dispersion – Connectors and splicers –Fibre termination – Optical sources: Light Emitting Diode (LED), – Optical detectors: PIN Diode

Unit-II INDUSTRIAL APPLICATION OF OPTICAL FIBRES

Fibre optic sensors: Types of fiber optics sensor, Intrinsic sensor- Temperature/ Pressure sensor, Extrinsic sensors, Phase Modulated Fibre Optic Sensor and Displacement sensor (Extrinsic Sensor) – Fibre optic instrumentation system: Measurement of attenuation (by cut back method), Optical domain reflectometers, Fiber Scattering loss Measurement, Fiber Absorption Measurement, Fiber dispersion measurements, End reflection method and Near field scanning techniques – Different types of modulators: Electro-optic modulator (EOM) –Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, current, voltage, liquid level and strain

Unit-III LASER FUNDAMENTALS

Fundamental characteristics of lasers – Level Lasers: Two-Level Laser, Three Level Laser, Quasi Three and four level lasers – Properties of laser: Monochromaticity, Coherence, Divergence and Directionality and Brightness –Laser modes – Resonator configuration – Q-switching and mode locking – Cavity damping – Types of lasers; – Gas lasers, solid lasers, liquid lasers and semiconductor lasers

Unit-IV INDUSTRIAL APPLICATION OF LASERS

Laser for measurement of distance, Laser for measurement of length, Laser for measurement of velocity, Laser for measurement of acceleration, Laser for measurement of current, voltage and Laser for measurement of Atmospheric Effect: Types of LIDAR, Construction And Working, and LIDAR Applications – Material processing: Laser instrumentation for material processing, Powder Feeder, Laser Heating, Laser Welding, Laser Melting, Conduction Limited Melting and Key Hole Melting –Laser trimming of material: Process Of Laser Trimming, Types Of Trim, Construction And Working Advantages – Material Removal and vaporization: Process Of Material Removal

Unit-V HOLOGRAM AND MEDICAL APPLICATIONS

Holography: Basic Principle, Holography vs. photography, Principle Of Hologram Recording, Condition For Recording A Hologram, Reconstructing and viewing the holographic image– Holography for non-destructive testing – Holographic components – Medical applications of lasers, laser-Tissue Interactions Photochemical reactions, Thermalisation, collisional relaxation, Types of

9

9

9

9

Interactions and Selecting an Interaction Mechanism – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Understand the principle, transmission, dispersion and attenuation characteristics of opticalfibers				
CO2	Apply the gained knowledge on optical fibers for its use as communication medium				
CO3	To educate sensor as well which have important applications in production, manufacturing industrial and biomedical applications.				
CO4	Understand laser theory and laser generation system				
CO5	Students will gain ability to apply laser theory for the selection of lasers for a specific Industrial and medical application				

TEXT BOOKS

1.	J.M. Senior, 'Optical Fibre Communication – Principles and Practice', Prentice Hall of
	India,1985
2.	J. Wilson and J.F.B. Hawkes, 'Introduction to Opto Electronics', Prentice Hall of India, 2001
3.	Eric Udd, William B., and Spillman, Jr., "Fiber Optic Sensors: An Introduction for Engineers
	and Scientists ", John Wiley & Sons, 2011

REFERENCES

1.	G. Keiser, 'Optical Fibre Communication', McGraw Hill, 1995
2.	M. Arumugam, 'Optical Fibre Communication and Sensors', Anuradha Agencies, 2002
3.	John F. Ready, "Industrial Applications of Lasers", Academic Press, Digitized in 2008
4.	Monte Ross, 'Laser Applications', McGraw Hill, 1968
5.	John and Harry, "Industrial lasers and their application", McGraw-Hill, 2002
6.	Keiser, G., "Optical Fiber Communication", McGraw-Hill, 3rd Edition, 2000

Course Outcomes		Program Outcomes											Program Specific Outcomes			
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	3	0	3	0	0	0	0	0	0	0	0	0	2	2	0	
CO2	3	0	3	0	0	0	0	0	0	0	0	0	2	2	0	
CO3	3	0	3	0	0	0	0	0	0	0	0	0	2	2	0	
CO4	3	0	3	0	0	0	0	0	0	0	0	0	2	2	0	
CO5	3	0	3	0	0	0	0	0	0	0	0	0	2	2	0	

PROFESSIONAL ELECTIVE – III (VII SEMESTER)

EI1731	OPTIMAL CONTROL	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

•	To understand the optimal control concepts and its importance.
•	To study the important optimal control methods existing in the industries in order obtain therequired level of control.
•	To introduce the concept of optimal control in various system.
•	To help the learners in the design and the implementation of the concept of optimal control.
•	To study, analyze and implement discrete-Time optimal control system.

UNIT I INTRODUCTION

Introduction to Optimal control – Comparison between the Conventional control and optimal control procedures - Statement of optimal control problem – Problem formulation and forms of optimal Control - Selection of performance measures. Necessary conditions for optimal control.

9

9

9

9

UNIT II MATHEMATICAL EVALUATION

Introduction and Performance Index - Basic Concept of calculus of variation- The basic variational problem - Fixed end point problem - Free end point problem - Variational Approach to Optimal Control Systems.

UNIT III CONTROL STRATEGY

Introduction - Time varying optimal control – LQR steady state optimal control – Frequency Domain Interpretation of LQR (LTI system) - Solution of Ricatti's equation – Application examples.

UNIT IV PROBLEM FORMATION

Optimal Control: Introduction, formation of optimal control problem, calculus of variations minimization of functions, constrained optimization. Pontryagin's Minimum/Maximum Principle, Linear Quadratic Problem-Hamilton Jacobi equation and its solution.

UNIT V ADVANCED SYSTEMS

Discrete-Time Optimal Control Systems - Matrix Discrete Riccati Equation -Analytical Solution of Matrix Difference Riccati Equation - Optimal Control Using Dynamic Programming - The Hamilton-Jacobi-Bellman (HJB) Equation - LQR System HJB Equation-Time Optimal Control System.

TOTAL (L: 45+T: 30): 75

PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Problem formulation, forms of optimal control and its necessary conditions.
CO2	Solving the algebraic equations to design the controller and to study about various problems
CO3	Designing optimal controllers using a class of procedures
CO4	Predict the system dynamic behavior through solution of ODEs and formation of optimalcontrol problem
CO5	Solve equations to design the controllers in discrete methods representing spatial and temporal variations in physical systems through numerical methods.

TEXT BOOKS

1.	Kirk, D.E., Optimal Control Theory, Dover Publications, 2004.
2.	D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.
3.	Astrom, K.J. Intro. Stochastic Control Theory, Dover Publications, 2006.

REFERENCES

1.	Gopal M, "Digital Control and State Variable Methods," Tata McGraw-Hill
2.	F.L. Lewis, "OptimalControl," JohnWiley&Sons,Inc.,NewYork,NY,1986
3.	Gopal M, "ModernControlSystemTheory," NewAgeInternational
4.	Sage. A.P.&White, C.C., "Optimum Systems Control," PrenticeHall, 1977.
5.	http://nptel.ac.in/courses/108105019/

Course Outcomes					Pro	gram	Outco	omes						am Sp utcom	pecific les
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-

CO2	3	3	2	2	2	-	-	-	-	-	-	-	2	1	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-	3	2	-
CO4	2	2	3	3	2	-	-	-	-	-	-	-	2	2	-
CO5	2	2	3	2	1	-	-	-	-	-	-	-	2	2	-

EI1732	LOGIC AND DISTRIBUTED CONTROL SYSTEM	L	Т	Р	С
		3	0	0	3

- To give an overview of the automation technologies such as PLCs, SCADA and DCS used in industries.
- To provide a fundamental understanding of the different languages used for PLC Programming
- To provide insight into some of the advanced principles those are evolving for present and future automation.

UNIT I	PLC & SCADA									
PLC: Evolutions of PLCs - Programmable Controllers - Architecture, I/O modules - Comparative										
study of Ind	ustrial PLCs.	ustrial PLCs. SCADA: Remote terminal units- Master station - Com								
architectures.										

UNIT II BASICS OF PLC PROGRAMMING(LADDER)

Basics of PLC programming – Ladder Logic – Relay type instructions – Timer/Counter instructions – Program control instructions – Data manipulation and math instructions – Programming Examples.

UNIT III PLC PROGRAMMING (OTHER LANGUAGES)

Functional block programming - Sequential function chart – Instruction list – Structured text programming – PLC controlled sequential Process Examples.

UNIT IV DISTRIBUTED CONTROL SYSTEM

DCS: Evolution & types – Hardware architecture – Field control station – Interfacing of conventional and smart field devices (HART and FF enabled) with DCS Controller – Communication modules – Operator and Engineering Human interface stations – Study of any one DCS available in market.

UNIT V ADVANCED TOPICS IN AUTOMATION

Introduction to Networked Control systems – Plant wide control – Internet of things – Cloud based Automation – OLE for Process Control – Safety PLC – Case studies: PLC - SCADA - DCS.

TOTAL : 45 PERIODS

9

9

9

COURSE OUTCOMES (COs)

CO1	Ability to understand all the important components such as PLC, SCADA, DCS,
CO2	To understand I/O modules and field devices of an industrial automation system
CO3	Ability to develop PLC program in different languages for industrial sequential applications
CO4	Able to select and use most appropriate automation technologies for a given application.
CO5	Ability to gain knowledge on the recent developments in industrial automation.

TEXT BOOKS:

1.	F.D. Petruzella, Programmable Logic Controllers, Tata Mc-Graw Hill, Third edition, 2010
2.	Michael P. Lukas, Distributed Control Systems: Their Evaluation and Design, Van Nostrand
	Reinhold Co., 1986
3.	D. Popovic and V.P.Bhatkar, "Distributed computer control for industrial Automation", Marcel
	Dekker, Inc., Newyork, 1990.

REFERENCES:

1.	Clarke, G., Reynders, D. and Wright, E., "Practical Modern SCADA Protocols: DNP3, 4. 60870.5 and Related Systems", Newnes, 1st Edition, 2004.
2.	Hughes, T.A., "Programmable Logic Controllers: Resources for Measurements and
	Control Series", 3rd Edition, ISA Press, 2004.
3.	McMillan, G.K., "Process/Industrial Instrument and Controls Handbook", 5thEdition,
	McGraw- Hill handbook, New York, 1999.
4.	NPTEL Notes on, "Programmable Logic Control System" by Department of Electrical Engg. IIT
	Kharagpur.

Course Outcomes					Prog	Program Outcomes													
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3				
CO1	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-				
CO2	3	3	2	2	2	-	-	-	-	-	-	-	2	1	-				
CO3	3	3	3	3	2	-	-	-	-	-	-	-	3	2	-				
CO4	2	2	3	3	2	-	-	-	-	-	-	-	2	2	-				

CO5	2	2	3	2	1	-	-	-	-	-	-	-	2	2	-	
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

EI1733	ADVANCED TOPIC IN PID CONTROL	L	Т	Р	С
		3	0	0	3

•	To provide an overview of the features associated with Industrial type PID controller.
•	To make the students understand the various PID Controller Design methods and about PID
	stabilization for Linear Time-invariant models.
•	To develop the skills needed to design adaptive and non-linear PID control schemes.
•	To provide basic knowledge about Fractional-order systems and Fractional-order- controller and
	to lay the foundation for the systematic approach to Design controller for fractional order
	systems.

UNIT I	INTRODUCTION	9
Evolution of	PID controller – PID Controller Structures – PID Implementation Issues –	Tuning of
	ler using Classical Approaches.	-
UNIT II	PID CONTROLLER DESIGN	9
PID Controll	er Design Techniques : Pole placement, Lamda Tuning, Direct Synthesis, Gai	n Margin &
Phase Margin	n and Optimization methods - Auto-Tuning.	
UNIT III	PID STABILIZATION	9
	of Linear Time-invariant Plants using P/PI/ PID controllers – Optimal Desi	gn using
PIDControll	ers – Robust and Non-fragile PID Controller Design.	
UNIT IV	ers – Robust and Non-fragile PID Controller Design. ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES	9
UNIT IV Gain Schedu		
UNIT IV Gain Schedu	ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES iled PID Controller - Self-tuning PI/PID Controller – PID Types Fuzzy Log	
UNIT IV Gain Schedu Controller –	ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES Iled PID Controller - Self-tuning PI/PID Controller – PID Types Fuzzy Log Predictive PID Control.	gic
UNIT IV Gain Schedu Controller – UNIT V	ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES Iled PID Controller - Self-tuning PI/PID Controller – PID Types Fuzzy Log Predictive PID Control. INTRODUCTION TO FRACTIONAL ORDER SYSTEM AND	gic 9
UNIT IV Gain Schedu Controller – UNIT V Fractional-o	ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES aled PID Controller - Self-tuning PI/PID Controller – PID Types Fuzzy Log Predictive PID Control. INTRODUCTION TO FRACTIONAL ORDER SYSTEM AND FRACTIONAL ORDER PID CONTROLLER	gic 9 nalysis of
UNIT IV Gain Schedu Controller – UNIT V Fractional-o Fractional-O	ADAPTIVE/NON-LINEAR PID CONTROL SCHEMES Iled PID Controller - Self-tuning PI/PID Controller – PID Types Fuzzy Log Predictive PID Control. INTRODUCTION TO FRACTIONAL ORDER SYSTEM AND FRACTIONAL ORDER PID CONTROLLER rder Calculus and Its Computations — Frequency and Time Domain Ar	gic 9 nalysis of s –Model Design.

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to determine the advanced Features supported by the Industrial Type PID Controller.
CO2	Ability to Design, tune and implement P/PI/PID Controllers to achieve desired Performance forvarious processes.
CO3	Ability to design and implement adaptive PID controllers and Non-linear PID Control schemes.
CO4	Ability to Analyze Fractional-order systems, Fractional-order- controller
CO5	Design of controller for fractional order systems.

TEXT BOOKS

1.	Karl J. Astrom and Tore Haggland, "Advanced PID Control", ISA Publications, 2005.
2.	Aniruddha Datta, Ming-Tzu Ho, and Shankar P. Bhattacharyya, "Structure and Synthesis of PID
	Controllers", Advances in Industrial Control, Springer Verlag London, 2000.

REFERENCES

1.	Antonio Visioli, "Practical PID Control" Springer- Verlag London, 2006.
2.	Aidan O' Dwyer, "Handbook of PI and PID Controller Tuning Rules", Imperial College Press, 2009.
3.	Xue, D., Chen, Y.Q., and Atherton, D.P., "Linear Feedback Control Analysis and Design with MATLAB, Advances in Design and Control", Society for Industrial and Applied Mathematics, 2008.

Course Outcomes					Prog	ram (Outco	omes						ram Sp outcom	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-

CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

EI1734	MODEL PREDICTIVE CONTROL	L	Т	Р	С
		3	0	0	3

•	To teach the students the general principles of model predictive control scheme.
•	To provide a comprehensive description of model predictive control schemes namely as dynamic matrix control, generalized predictive control scheme and State space based model predictive control scheme.
•	To highlight the key features of MPC for its Industrial Success.
•	To introduce the skills required to formulate both unconstrained and constrained optimal control schemes.
•	To develop the skills needed to design Model Predictive Control schemes to achieve the desired performance.

UNIT I	MODEL PREDICTIVE CONTROL SCHEMES	9
Introductio	n to Model Predictive Control - Model Predictive Control Elements	- Model
Predictive	Control Schemes: Dynamic Matrix Control and Model Algorithmic Control	l – Case
Studies.		
UNIT II	GENERALIZED PREDICTIVE CONTROL SCHEME	9
Generalized	Predictive Control Scheme – Simple Implementation of Generalized Predictive	e Control
Scheme for	Industrial Processes – Multivariable Generalized Predictive Control Schem	e – Case
Studies.		
UNIT III	STATE SPACE BASED MODEL PREDICTIVE CONTROL SCHEME	9
State Space	Model Based Predictive Control Scheme - Review of Kalman Update based	filters –
State Obser	ver Based Model Predictive Control Schemes – Case Studies.	
UNIT IV	CONSTRAINED MODEL PREDICTIVE CONTROL SCHEME	9
Constraints	Handling: Amplitude Constraints and Rate Constraints – Constraints and Opt	imization
Constraine	d Model Predictive Control Scheme – Case Studies.	
UNIT V	ADVANCED TOPICS IN MPC	9
Robust Mo	odel Predictive Control Scheme – Adaptive Model Predictive Control S	cheme –
Multiple- N	Aodel based Model Predictive Control Scheme - Fast Methods for Impl	ementing

Nonlinear Model Predictive Control Scheme – Case Studies

TOTAL (L: 45): 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to explain the advantages and disadvantages of various MPC schemes
CO2	Ability to design both unconstrained and constrained model predictive controllers.
CO3	Ability to explain the advanced Features supported by the MPC Scheme.
CO4	Ability to Identify, formulate and solve problem in the field of Process Control domain using MPC.
C05	Ability to implement MPC algorithms in MATLAB/SCILAB.

TEXT BOOKS

1.	Camacho, E.F., and Bordons, C., "Model Predictive Control", 2nd Edition, Advanced in Industrial Control Springer Verlag, 2013.
2.	Liuping Wang, "Model Predictive Control System Design and Implementation Using MATLAB", Advanced in Industrial Control, Springer Verlag, 2009.

REFERENCES

1.	Wayne Bequette, B., "Process Control: Modeling, Design, and Simulation", Prentice Hall of India, 2004.
2.	Seborg, D.E., Duncan, A. Mellichamp, Edgar, T.F., and Doyle, F.J., III, "Process Dynamics and Control", John Wiley and Sons, 3rd Edition, 2010.

Course Outcomes		Program Outcomes												ram Spo Dutcome	
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-

CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-

EI1735	FAULT DETECTION AND DIAGNOSIS	L	Т	Р	С
		3	0	0	3

•	To give an overview of different Fault Detection and Diagnosis methods.
•	To present an overview of various types of fault detection schemes using Limit Checking, Parameter estimation methods, Principle Component Analysis.
•	To impart knowledge and skills needed to design and detect sensor and actuators faults using structured residual approach as well as directional structured residual approach.
•	To impart knowledge and skills needed design and detect faults in sensor and actuators using GLR and MLR based Approaches.
•	To impart knowledge and skills needed to detect and quantify and compensate stiction in Control valves.

UNIT I INTRODUCTION & ANALYTICAL REDUNDANCY CONCEPTS

Introduction – Types of faults and different tasks of Fault Diagnosis and Implementation – Different approaches to FDD: Model free and Model based approaches-Introduction-Mathematical representation of Faults and Disturbances: Additive and Multiplicative types – Residual Generation: Detection, Isolation, Computational and stability properties – Design of Residual generator – Residual specification and Implementation.

UNIT IIFAULT DETECTIONAND DIAGNOSISUSINGLIMITCHECKING ANDPROCESS IDENTIFICATION METHODS

Limit Checking of absolute values – Trend Checking – Change detection using binary thresholds – adaptive thresholds – Change detection with Fuzzy thresholds – Fault detection using Process Identification methods and Principle Component Analysis.

UNIT III FAULT DETECTION AND DIAGNOSIS USING PARITY EQUATIONS

9

9

9

9

Introduction — Residual structure of single fault Isolation: Structural and Canonical structures-Residual structure of multiple fault Isolation: Diagonal and Full Row canonical concepts — Introduction to parity equation implementation and alternative representation - Directional Specifications: Directional specification with and without disturbances — Parity Equation Implementation.

UNIT IV | FAULT DIAGNOSIS USING STATE ESTIMATORS

Introduction – Review of State Estimators – Fault Detection and Diagnosis using Generalized

Likelihood Ratio Approach and Marginalized Likelihood Ratio Approach.

UNIT V CASE STUDIES

Fault detection and diagnosis of DC Motor Drives – Fault detection and diagnosis of a Centrifugal pump-pipe system – Fault detection and diagnosis of an automotive suspension and the tire pressures - Automatic detection, quantification and compensation of valve stiction.

TOTAL (L: 45): 45 PERIODS

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to explain different approaches to Fault Detection and Diagnosis.
CO2	Ability to detect faults using Limit Checking, Parameter estimation methods, Principle ComponentAnalysis.
CO3	Ability to design and detect sensor and actuators faults using structured residual approach as well as directional structured residual approach.
CO4	Ability to design and detect faults in sensor and actuators using GLR and MLR based Approaches.
C05	Ability to detect and quantify and compensate stiction in Control valves.

TEXT BOOKS

1.	Janos J. Gertler, "Fault Detection and Diagnosis in Engineering systems", 2nd Edition, Marcel Dekker, 1998.
2.	Rolf Isermann, "Fault-Diagnosis Systems an Introduction from Fault Detection to Fault
	Tolerance", Springer Verlag, 2006.

REFERENCES

1.	Steven X. Ding, "Model based Fault Diagnosis Techniques: Schemes, Algorithms, and Tools", Springer Publication, 2012.
2.	Hassan Noura, Didier Theilliol, Jean-Christophe Ponsart and Abbas Chamseddine, "Fault- Tolerant Control Systems: Design and Practical Applications", Springer Publication, 2009.
3.	Mogens Blanke, "Diagnosis and Fault-Tolerant Control", Springer, 2006.
4.	Ali Ahammad Shoukat Choudhury, Sirish L. Shah and Nina F. Thornhill, "Diagnosis of Process Nonlinearities and Valve Stiction: Data Driven Approaches", Springer, 2008.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course		Program Outcomes												Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-		
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-		
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-		
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-		
CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-		

EI1736	SAFETY INSTRUMENTAL SYSTEM	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

- To make the students aware of basic concepts of safety instrumented system, standards and risk analysis techniques.
- To make the students understand different layers of protection.
- To make student conscious about safety instrumentation applications.
- To make the students aware of potential events and impact of failures.
- To make students aware of design, installation and maintenance procedures.

UNIT I INTRODUCTION

Safety Instrumented System (SIS): need, features, components, difference between basic process control system and SIS - Risk: how to measure risk, risk tolerance, Safety integrity level, safety instrumented functions - Standards and Regulation – HSE-PES, AICHE-CCPS, IEC-61508, ANSI/ISA-84.00.01-2004 (IEC 61511 Mod) & ANSI/ISA – 84.01-1996, NFPA 85, API RP 556, API RP 14C, OSHA (29 CFR 1910.119 – Process Safety Management of Highly Hazardous Chemicals – SIS design cycle - Process Control vs Safety Control.

9

9

UNIT II PROTECTION LAYERS AND SAFETY REQUIREMENT SPECIFICATIONS 9

Prevention Layers: Process Plant Design, Process Control System, Alarm Systems, Procedures, Shutdown/Interlock/Instrumented Systems (Safety Instrumented Systems – SIS), Physical Protection - Mitigation Layers: Containment Systems, Scrubbers and Flares, Fire and Gas (F&G) Systems, Evacuation Procedures - Safety specification requirements as per standards, causes for deviation from the standards.

UNIT III SAFETY INTEGRITY LEVEL (SIL)

Evaluating Risk, Safety Integrity Levels, SIL Determination Method : As Low As Reasonably

Practical (ALARP), Risk matrix, Risk Graph, Layers Of Protection Analysis (LOPA) – Issues related to system size and complexity –Issues related to field device safety – Functional Testing. **UNIT IV SYSTEM EVALUATION**

9

9

Failure Modes, Safe/Dangerous Failures, Detected/Undetected Failures, Metrics: Failure Rate, MTBF, and Life, Degree of Modelling Accuracy, Modelling Methods: Reliability Block Diagrams, Fault Trees, Markov Models - Consequence analysis: Characterization of potential events, dispersion, impacts, occupancy considerations, consequence analysis tools - Quantitative layer of protection analysis: multiple initiating events, estimating initiating event frequencies and IPL failure probabilities.

UNIT V CASE STUDY

SIS Design check list - Case Description: Furnace/Fired Heater Safety Shutdown System: Scope of Analysis, Define Target SILs, Develop Safety Requirement Specification (SRS), SIS Conceptual Design, Lifecycle Cost Analysis, Verify that the Conceptual Design Meets the SIL, Detailed Design, Installation, Commissioning and Pre-startup Tests, Operation and Maintenance procedures.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course students will have the

C01	Ability to analyse the role of safety instrumented system in the industry.
CO2	Ability to Identify and analyse the hazards.
CO3	Ability to determine the safety integrity level for an application. Ability to characterize the
	safety environment in industry.
CO4	Ability to analyse the failure modes, failure rates and MTBF using various reliability
	engineering tools.
C05	Ability to apply the design, installation and maintenance procedures for SIS applied to
C05	industrial processes. Ability to present the results in written and oral forms.
TEX	r BUUKS.

TEXT BOOKS:

- 1. Paul Gruhn and Harry L. Cheddie," Safety Instrumented systems: Design, Analysis and Justification", ISA, 2nd edition, 2018.
- 2. Eric W. Scharpf, Heidi J. Hartmann, Harlod W. Thomas, "Practical SIL target selection: Risk analysis per the IEC 61511 safety Lifecycle", exida2nd Edition 2016.

REFERENCES

- 1. William M. Goble and Harry Cheddie, "Safety Instrumented Systems Verification: Practical Probabilistic Calculations" ISA, 2005.
- 2. Edward Marszal, Eric W. Scharpf, "Safety Integrity Level Selection: Systematic Methods Including Layer of Protection Analysis", ISA, 2002.
- 3. Standard ANSI/ISA-84.00.01-2004 Part 1 (IEC 61511-1 Mod) "Functional Safety: Safety Instrumented Systems for the Process Industry Sector Part 1: Framework, Definitions, System, Hardware and Software Requirements", ISA, 2004.

Course		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3			
CO1	0	0	3	0	0	3	0	0	0	0	0	3	0	2	2			
CO2	0	0	3	1	0	2	1	1	0	0	1	1	0	2	2			
CO3	0	0	2	1	0	2	2	1	0	0	1	1	0	2	2			
CO4	0	0	2	1	0	2	2	1	0	0	1	1	0	2	2			
CO5	0	0	2	1	0	2	2	1	0	0	1	1	0	2	2			

PROFESSIONAL ELECTIVE – IV (VII SEMESTER)

EC1007	ADVANCED DIGITAL SIGNAL PROCESSING	L	Т	Р	С
		3	0	0	3

Course Objectives

• To learn and understand the concepts of stationary and non-stationary random signals and analysis & characterization of discrete-time random processes

• To enunciate the significance of estimation of power spectral density of random processes

• To introduce the principles of optimum filters such as Wiener and Kalman filters

- To introduce the principles of adaptive filters and their applications to communication engineering
- To introduce the concepts of multi-resolution analysis

UNIT I DISCRETE-TIME RANDOM PROCESSES

Random variables - ensemble averages a review, random processes - ensemble averages, autocorrelation and autocovariance matrices, ergodic random process, white noise, filtering random processes, spectral factorization, special types of random processes - AR, MA, ARMA.

UNIT II SPECTRUM ESTIMATION

Bias and consistency, Non-parametric methods - Periodogram, modified-Periodogram - performance analysis. Bartlett's method, Welch's method, Blackman-Tukey method. Performance comparison. Parametric methods - autoregressive (AR) spectrum estimation - autocorrelation method, Prony's method, solution using Levinson Durbin recursion.

UNIT III OPTIMUM FILTERS

Wiener filters - FIR Wiener filter - discrete Wiener Hopf equation, Applications - filtering, linear prediction. IIR Wiener filter - causal and non-causal filters. Recursive estimators - discrete Kalman

137

10

9

filter.

UNIT IV ADAPTIVE FILTERS

Principles and properties of adaptive filters - FIR adaptive filters. Adaptive algorithms - steepest descent algorithm, the LMS algorithm - convergence. Applications of adaptive filtering - noise cancellation, channel equalization.

UNIT V MULTIRESOLUTION ANALYSIS

Short-time Fourier transform - Heisenberg uncertainty principle. Principles of multi-resolution analysis - sub-band coding, the continuous and discrete wavelet transform - properties. Applications of wavelet transform - noise reduction, image compression.

TOTAL:45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

CO1	Articulate and apply the concepts of special random processes in practical applications
CO2	Choose appropriate spectrum estimation techniques for a given random process
CO3	Apply optimum filters appropriately for a given communication application
CO4	Apply appropriate adaptive algorithm for processing non-stationary signals
CO5	Apply and analyse wavelet transforms for signal and image processing based applications

TEXT BOOKS

1.	Monson H. Hayes, "Statistical digital signal processing and modeling", John Wiley
	and Sons Inc. New York, Indian reprint 2008. (UNIT I-IV).
2.	P. P. Vaidyanathan, "Multirate systems and filter banks", Prentice Hall Inc. 1993
	(UNIT V)

REFERENCES:

1.	John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles,
	Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall,
	2007.
2.	Sophoncles J. Orfanidis, "Optimum signal processing", McGraw Hill, 2000

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

9

Course Outcomes		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	1	2	1	1	0	0	0	0	0	0	0	3	2	1			
CO2	3	1	2	1	1	0	0	0	0	0	0	0	3	2	1			
CO3	3	1	2	1	1	0	0	0	0	0	0	0	3	2	1			
CO4	3	2	2	1	1	0	0	0	0	0	0	0	3	3	2			
CO5	3	2	2	1	1	0	0	0	0	0	0	0	3	3	2			

EC1702	RADAR AND NAVIGATIONAL AIDS	L	Т	Р	С
		3	0	0	3

•	To apply Doppler principle to radars and hence detect moving targets, cluster, also to understand tracking radars
•	To refresh principles of antennas and propagation as related to radars, also study of transmitters and
	receivers.

• To understand principles of navigation, in addition to approach and landing aids as related to navigation

UNIT I INTRODUCTION TO RADAR EQUATION

Introduction- Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequencies – Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations.

9

9

UNIT II MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing -Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics - Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT).

UNIT III	DETECTION OF SIGNALS IN NOISE	9
Matched -Filte	er Receiver -Detection Criteria - DetectorsAutomatic Detector -	- Integrators -

Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays.

Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter. - The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT IV RADIO DIRECTION AND RANGES

Introduction - Four methods of Navigation. - The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders -Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range -VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments.

Hyperbolic Systems of Navigation (Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT V SATELLITE

SATELLITE NAVIGATION SYSTEM

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment - Instrument Landing System - Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect - Beam Configurations -Doppler Frequency Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation Over the Earth - Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

TOTAL:45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Explain principles of navigation, in addition to approach and landing aids as related to navigation
CO2	Derive and discuss the Range equation and the nature of detection.
CO3	Describe about the navigation systems using the satellite.
CO4	Describe about radio direction and ranges
CO5	Describe about satellite navigation system

9

TEXT BOOKS

1.	Merrill I. Skolnik," Introduction to Radar Systems", 3rd Edition Tata Mc Graw-Hill 2003.
2.	N.S.Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.

REFERENCES

1.	Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004
2.	J.C Toomay, " Principles of Radar", 2nd Edition –PHI, 2004

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outco	omes					_	am Sp utcom	pecific les
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	2	2	1	-	-	-	-	-	-	-	2	2	-
CO2	3	3	2	2	1	-	-	-	-	-	-	-	2	1	-
CO3	3	3	3	3	1	-	-	-	-	-	-	-	3	2	-
CO4	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO5	3	3	3	2	1	-	-	-	-	-	-	-	2	2	-

EC1731	CMOS VLSI DESIGN	L	Т	P	С
		3	0	0	3
Objectives					

• Study the fundamentals of CMOS circuits and its characteristics.

- Learn the design and realization of combinational & sequential digital circuits.
- Architectural choices and performance trade-offs involved in designing and realizing the circuits in CMOS technology are discussed
- Learn the different FPGA architectures and testability of VLSI circuits.

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design	001
Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Characteristics, C-V Characteristics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear	

Delay Model	Logical effort	Parasitic Delay	Delay in Lo	ogic Gate, Scaling.
Delay Model,	Logical chion	, I diasitic Delay	, Delay III Lo	Jere Gaie, Seamie.

UNIT - II COMBINATIONAL MOS LOGIC CIRCUITS

Circuit Families: Static CMOS, Ratioed Circuits, Cascade Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls. Power: Dynamic Power, Static Power, Low Power Architecture.

UNIT - III SEQUENTIAL CIRCUIT DESIGN

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Mono stability Sequential Circuits, Astability Sequential Circuits. Timing Issues: Timing Classification Of Digital System, Synchronous Design.

UNIT - IV DESIGN OF ARITHMETIC BUILDING BLOCKS AND SUB SYSTEM

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed trade-offs, Case Study: Design as a trade-off. Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.

UNIT - V IMPLEMENTATION STRATEGIES AND TESTING

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for
Testability: Ad Hoc Testing, Scan Design, BIST, IDDQ Testing, Design for
Manufacturability,Boundary Scan.CO5

Total Periods: 45

9

9

9

9

Text Books:

- 1. Neil H.E. Weste, David Money Harris "CMOS VLSI Design: A Circuits and Systems Perspective", 4th Edition, Pearson, 2017.
- 2. Jan M. Rabaey, Anantha Chandrakasan, Borivoje. Nikolic, "Digital Integrated Circuits: A Design perspective", Second Edition, Pearson, 2016.

Reference Books:

- 1. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997
- 2. Sung-Mo kang, Yusuf leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits: Analysis& Design",4th edition McGraw HillEducation,2013
- 3. Wayne Wolf, "Modern VLSI Design: System On Chip", Pearson Education, 2007
- 4. R. Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005.

Course Ou	itcomes (CO)
CO1	Realize the concepts of digital building blocks using MOS transistor.
CO2	Design combinational MOS circuits and power strategies.
CO3	Design and construct Sequential Circuits and Timing systems.
CO4	Design arithmetic building blocks and memory subsystems.
CO5	Apply and implement FPGA design flow and testing.

Course					Pro	gram	Outco	omes					-	am Sp utcom	pecific les
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3

EI174	41	THERMAL POWER PLANT INSTRUMENTATION	L	Т	Р	С
			3	0	0	3
COURS	E OB	JECTIVES				
•	To r	nake the students familiarize about various power generation me	ethods.			
•	To i	dentify various parameters in thermal power plant				
•	To i	mpart knowledge about the different types of controls and control	ol loop	s.		
•		Camiliarize the student with the methods of monitoring different pation furbines and their control.	parame	eters li	ke spee	ed,
						· · · · · ·
Brief su		POWER GENERATION METHODS of methods of power generation: hydro, thermal, nuclear, se				
Brief su	nce of	of methods of power generation: hydro, thermal, nuclear, so instrumentation in power generation. Details of boiler processed				ver –
Brief su importar – cogene	nce of	of methods of power generation: hydro, thermal, nuclear, so instrumentation in power generation. Details of boiler processed				ver –
importar — cogene Unit-II Electrica paramete	al me	of methods of power generation: hydro, thermal, nuclear, so instrumentation in power generation. Details of boiler processe n.	es P&l	l diagra	am of n elec	ver – boile 9 ctrica
Brief su importar – cogene Unit-II Electrica paramete measure	al me ers: fl	of methods of power generation: hydro, thermal, nuclear, se instrumentation in power generation. Details of boiler processe n. MEASUREMENTS IN POWER PLANTS easurements: current, voltage, power, frequency, power to low of feed water, fuel, air, steam pressure and steam tempor – Flue gas oxygen analyzer – pollution monitoring instrument	es P&l	l diagra	am of n elec	ver – boile 9 ctrica ensity
Brief su importar – cogene Unit-II Electrica paramete measure Unit-III	al me ers: fl ment	of methods of power generation: hydro, thermal, nuclear, seinstrumentation in power generation. Details ofboiler processen. MEASUREMENTS IN POWER PLANTS easurements: current, voltage, power, frequency, power the low of feed water, fuel, air, steam pressure and steam tempor – Flue gas oxygen analyzer – pollution monitoring instrument FURNACE CONTROL	factor erature ts.	l diagr – no e – sm	am of n elec oke de	ver – boile 9 etrica ensit
Brief su importar – cogene Unit-II Electrica paramete measure Unit-III Coal han requirem	al me ers: fl ment ndling:	of methods of power generation: hydro, thermal, nuclear, se instrumentation in power generation. Details of boiler processe n. MEASUREMENTS IN POWER PLANTS easurements: current, voltage, power, frequency, power to low of feed water, fuel, air, steam pressure and steam tempor – Flue gas oxygen analyzer – pollution monitoring instrument	factor erature ts.	- no e – sm	n electoria de la construcción d	ver – boile 9 ctrica ensit 9 powe

Boiler metal temperature measurement, pressure measuring devices – Boiler feed water processing and control - drum level measurement methods - steam temperature control: main steam and reheat steam temperature control, superheater control, deaerator control — distributed control system in power plants — interlocks in boiler operation.

Unit-V

TURBINE MONITORING AND CONTROL

9

Types of steam turbines – impulse and reaction turbines – compounding – Turbine governing system, Speed measurement, rotor and casing movement- vibration - shell temperature monitoring and control - lubricant oil temperature - cooling system.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Understanding various power generation process.
CO2	Identify important parameter to be monitored and controlled in thermal power plant.
CO3	Knowledge about various building blocks and instruments involved in thermal power plant andits controlling process.
CO4	Understanding about boiler control
CO5	Understanding about turbine monitoring and control

TEXT BOOKS

 Sam G. Dukelow, The control of Boilers, instrument Society of America, 1991.
 Modern Power Station Practice, Vol.6, Instrumentation, Controls and Testing, Pergamon Press, Oxford, 1971.

REFER	ENCES	
1.	Krishnaswamy KM, Bala P, Bala MP, "Power	Plant Instrumentation," Prentice Hall, 2013
2.	Elonka.S.M.and Kohal A.L., Standard Boiler G	Dperations, McGraw-Hill, New Delhi, 1994.
3.	Jain R.K., Mechanical and industrial Measurer	nents, Khanna Publishers, New Delhi, 2008.

Course Outcomes	Program Outcomes										Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	1	3	0	3	0	0	0	0	0	0	0	3	3	2
CO2	3	1	3	0	3	0	0	0	0	0	0	0	3	3	2
CO3	3	1	2	0	3	0	0	0	0	0	0	0	3	2	2
CO4	3	1	2	0	3	0	0	0	0	0	0	0	3	2	2

CO5	3	1	3	0	3	0	0	0	0	0	0	0	3	3	2	
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

EI1742	MECHATRONICS SYSTEM DESIGN	L	Т	Р	С
		3	0	0	3
COURSE	OBJECTIVES				1
• T	he students will be exposed to design mechatronics system ir	n Labview	& Vim	–Sim	
E	nvironments				
UNIT I	INTRODUCTION TO MECHATRONICS SYSTEM				9
Key eleme	nts – Mechatronics Design process –Design Parameters –	- Tradition	al and	Mecha	atronics
designs – A	dvanced approaches in Mechatronics - Industrial design and	ergonomic	s, safet	y.	
UNIT II	SYSTEM MODELLING				9
Introduction	n-model categories-fields of application-model develop	nent-mode	l verif	ication	-mode
validation-r	model simulation-design of mixed systems-electro mechanic	s design-n	nodel tr	ansfori	nation
domain-ind	lependent description forms-simulator coupling.				
UNIT III	REAL TIME INTERFACING				9
UNIT III Introduction	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui			•	s- Over
UNIT III Introduction view of I/O	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data	conversion	proces	s, App	s- Over licatior
UNIT III Introduction view of I/O Software- I	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data Lab view Environment and its applications, Vim-Sim Enviro	conversion	proces	s, App	s- Over licatior
UNIT III Introduction view of I/O	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data Lab view Environment and its applications, Vim-Sim Enviro	conversion	proces	s, App	s- Over licatior
UNIT III Introduction view of I/O Software- I machine int	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data Lab view Environment and its applications, Vim-Sim Environment terface.	conversion	proces	s, App	s- Over licatior s -Mar
UNIT III Introduction view of I/O Software- I machine int UNIT IV	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM	conversion	proces its appl	s, App ication	s- Over licatior s -Mar
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data C Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system –	conversion onment & - Autofocu	proces its appl	s, Application	s- Over licatior s -Mar 9 xposure
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine man	conversion onment & - Autofocu agement s	proces its appl	s, Application era, ex – Con	s- Over licatior s -Mar 9 xposure trolling
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine man e of a hot/cold reservoir using PID- Control of pick and place	conversion onment & - Autofocu agement s e robot – F	proces its appl	s, Application era, ex – Con	s- Over licatior s -Mar 9 xposure trolling
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine man	conversion onment & - Autofocu agement s e robot – F	proces its appl	s, Application era, ex – Con	s- Over licatior s -Mar 9 xposure trolling
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine man e of a hot/cold reservoir using PID- Control of pick and place	conversion onment & - Autofocu agement s e robot – F	proces its appl	s, Application era, ex – Con	s- Over licatior s -Mar 9 xposure trolling
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature tracking usi	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine man e of a hot/cold reservoir using PID- Control of pick and placting RFID – Online surface measurement using image process MICRO MECHATRONIC SYSTEM	conversion onment & - Autofocu agement s e robot – F sing	proces its appl is Cam ystems. Part iden	s, Application era, ex – Con ntificat	s- Over licatior s -Mar 9 cposure trolling ion and 9
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature tracking usi UNIT V Introduction	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data card and view Environment and its applications, Vim-Sim Process, and place in a not control using D.C.Motor& Solenoids – Engine mane of a hot/cold reservoir using PID- Control of pick and place ing RFID – Online surface measurement using image process, and the process of a MICRO MECHATRONIC SYSTEM	conversion onment & - Autofocu agement s e robot – F sing Scaling la	proces its appl is Cam ystems. Part iden	s, Application era, ex – Con ntificat	s- Over licatior s -Mar 9 cposure trolling ion and 9
UNIT III Introduction view of I/O Software- I machine int UNIT IV Introduction control– M temperature tracking usi UNIT V Introduction	REAL TIME INTERFACING n-selection of interfacing standards Elements of Data Acqui process, General purpose I/O card and its installation, Data of Lab view Environment and its applications, Vim-Sim Environment and its applications, Vim-Sim Environment Lab view Environment and its applications, Vim-Sim Environment terface. CASE STUDIES ON MECHATRONIC SYSTEM n –Fuzzy based Washing machine – pH control system – Iotion control using D.C.Motor& Solenoids – Engine mane of a hot/cold reservoir using PID- Control of pick and place ing RFID – Online surface measurement using image process MICRO MECHATRONIC SYSTEM n- System principle - Component design – System design – pot – Micro pump – Applications of micro mechatronic comp	conversion onment & - Autofocu agement s e robot – F sing Scaling la	proces its appl is Cam ystems. Part iden ws – M	era, ex – Con ntificat	s- Over licatior s -Mar 9 cposure trolling ion and 9

Αt urse, the student should have the:

CO1	The students will be able to design systems in mechatronics approach using modern software packages.
CO2	The students will be able to do system modelling
CO3	The students will be able to do real time interfacing

CO4	Knowledge about mechatronic system
CO5	Knowledge about micro mechatronic system

TEXT BOOKS

1.	Devdas shetty, Richard A. Kolk, "Mechatronics System Design", 2nd Edition ,Cengage Learning 2011.
2.	Georg pelz, "Mechatronic Systems: Modeling and simulation" with HDL's, John wiley and sons Ltd, 2003

REFERENCES

1.	Bishop, Robert H, "Mechatronics Hand book", CRC Press, 2002
2.	Bradley, D.Dawson, N.C. Burd and A.J. Loader, "Mechatronics: Electronics in Products and Processes", CRC Press 1991, First Indian print 2010.
3.	De Silva, "Mechatronics: A Foundation Course", Taylor & Francis, Indian Reprint, 2013

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	gram (Outco	mes					_	Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	2	2	2	3	-	-	-	-	-	-	1	2	-	-		
CO2	3	2	2	2	3	-	-	-	-	-	-	1	2	1	-		
CO3	3	2	2	2	3	-	-	-	-	-	-	1	3	2	-		
CO4	3	2	2	2	3	-	-	-	-	-	-	1	2	2	-		
CO5	3	2	2	2	3	-	-	-	-	-	-	1	2	2	I		

EI1743	ADVANCED PROCESS CONTROL	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

•	To teach students to build and analyze models for time-varying systems and non-linear systems.
•	To develop the skills needed to design adaptive controllers such as gain-scheduled adaptive
	controller, Model-reference adaptive controller and Self-tuning controller for various applications
•	To make the students learn to formulate optimal control schemes
•	To provide basic knowledge about Fractional-order systems and Fractional-order- controller and to
	lay the foundation for the systematic approach to Design controller for fractional order systems
•	To introduce FDI Techniques, such as Principal component Analysis, state observer to detect and
	diagnose faults in sensors and actuators.

UNIT I CONTROL OF TIME-VARYING AND NONLINEAR SYSTEMS

Models for Time-varying and Nonlinear systems – Input signal design for Identification –Realtime parameter estimation – Model Validation - Types of Adaptive Control - Gain scheduling - Adaptive Control - Deterministic Self-tuning Controller and Model Reference Adaptive Controller – Control of Hammerstein and Wiener Systems.

UNIT II OPTIMAL CONTROL & FILTERING

Introduction – Performance Measure for optimal control problem – Dynamic Programming – Computational Procedure for solving Control Problem – LQR – Introduction to Optimal Filtering – Discrete Kalman Filter – Linear Quadratic Gaussian (LQG).

UNIT III FRACTIONAL ORDER SYSTEM & CONTROLLER

Fractional-order Calculus and Its Computations – Frequency and Time Domain Analysis of Fractional- Order Linear Systems - Filter Approximations to Fractional-Order Differentiations – Model reduction Techniques for Fractional Order Systems –Controller Design Studies for Fractional Order.

UNIT IV H-INFINITY CONTROLLER

Introduction – Norms for Signals – Robust Stability – Robust Performance – Small Gain Theorem – Optimal H2 Controller Design - H-Infinity Controller Design — Effects of Weighting Functions in H-Infinity Control.

UNIT V FAULT DIAGNOSIS AND FAULT-TOLERANT CONTROL

Process Monitoring - Introduction – Statistical Process Control – Fault Detection with Principal Component Analysis – Fault Detection with State Observers – Fault Detection with signal models - Fault Detection of Control Loops- Sensor and Actuator Fault-Tolerant Control Design.

TOTAL: 45 PERIODS

9

9

9

9

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1 Ability to Apply knowledge of mathematics, science, and engineering to build and analyze

	models for time-varying systems and non-linear systems.
CO2	Ability to design and implement adaptive controllers such as gain-scheduled adaptive controller, Model-reference adaptive controller and Self-tuning controller
CO3	Ability to Identify, formulate, and solve optimal controller
CO4	Ability to Analyze Fractional-order systems, Fractional-order- controller and Design controller for fractional order systems. Ability to design and implement H2 and H-infinity Controllers
CO5	Ability to use the FDI Techniques, such as Principal component Analysis, state observer to detect and diagnose faults in sensors and actuators.

REFERENCES

1.	K.J. Astrom and B.J.Wittenmark, "Adaptive Control", Pearson Education, Second Edition, 2008.
2.	Donald E.Kirk, "Optimal Control Theory – An Introduction", Dover Publications, Inc. Mineola, New York, 2012
3.	D. Xue, Y.Q. Chen, D.P. Atherton, "Linear Feedback Control Analysis and Design with MATLAB, Advances In Design and Control", Society for Industrial and Applied Mathematics, 2008.
4.	R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance", Springer, 2006.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	gram (Outco	mes					Program Specific Outcomes		
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
C01	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	-	2	1	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-	3	2	-

CO4	2	2	3	3	2	-	-	-	-	-	-	-	2	2	-
CO5	2	2	3	2	1	-	-	-	-	-	-	-	2	2	-

PROFESSIONAL ELECTIVE – V (VIII SEMESTER)

GE1001	1			P	С
		3	0	0	3
Objectives					
	ndamental aspects of Intellectual Property Rights (IPR) and its composite	nents	S .		
	knowledge on patents, patent regime in India and abroad and				
registration aspe					
	knowledge on copyrights, trademarks and registration aspects				
	knowledge on Design, Geographical Indication (GI), Plant Variety and	d La	yout	,	
	on and their registration aspects				
• To aware about	enforcement in IPR and government steps in fostering IPR				
UNIT - I	INTRODUCTION				
	as: Basic concepts and need for Intellectual Property, Patents, Copy	vrial	ata		
	ations, IPR in India and Abroad – Genesis and Development – The wa				
	RIPS, Nature of Intellectual Property, Industrial Property, Technol			C	01
	is and Innovations – Important examples of IPR.	лоgі	car		
Research, mychton	s and mnovations – important examples of it K.			L	
UNIT - II	REGISTRATION OF IPRs				9
	ctical aspects of registration of Copy Rights, Trademarks, I	Pater	nts		
	ations, Trade Secrets and Industrial Design registration in India and Al			C	02
<u>8</u>					
UNIT - III	AGREEMENTS AND LEGISLATIONS				9
International Treatie	es and Conventions on IPRs, TRIPS Agreement, PCT Agreement, Pat	ent A	Act	C	$\overline{\mathbf{n}}$
of India, Patent Am	endment Act, Design Act, Trademark Act, Geographical Indication A	.ct.			U.
					_
UNIT - IV	DIGITAL PRODUCTS AND LAW				9
	and Developments as Knowledge Assets – IP Laws, Cyber Law and				
Content Protection	– Unfair Competition – Meaning and Relationship between	Unf	air	C	04
Competition and IP	Laws – Case Studies.				
				<u> </u>	
UNIT - V	ENFORCEMENT OF IPRs				9
Infringement of IPR	s, Enforcement Measures, Emerging issues – Case Studies.			C	0:
		D	. 1		4.5
Tort D 1	Total	Peri	lods	:	45
Text Books:	Managing Intellectual Dependents, Deputing II-II of Indians (1.1.10014				
	d, Managing Intellectual Property, Prentice Hall of India pvt Ltd,2014			ا م	ե։
1	[utallastral Duananter Dialeta and Cause Dislite Ear Ear Dell' 4' N				
1	Intellectual Property Rights and Copy Rights, EssEss Publications, Ne	ew	1	Del	ш

3. Ahuja, V K, Law relating to Intellectual Property Rights. India, Lexis Nexis, 2017.

Reference Books:

- 1. Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2017.
- 2. Prabuddha Ganguli, "Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011.
- 3. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2013.

Course Outcomes (CO)

Course o	
CO1	Ability to get an adequate knowledge on patent and copyright for their innovative research
	works
CO2	Ability to get idea about the registration process of IPR
CO3	Ability to study various agreements and Acts regarding IPR
CO4	Ability to inculcate the knowledge on innovations, developments and IP laws
CO5	Ability to aware the knowledge on enforcement and current issues

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course					Prog	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3	
CO1	3	2	2	2	1	2	1	1	2	2	2	3	3	2	3	
CO2	3	2	2	2	1	2	1	1	2	2	2	3	3	2	3	
CO3	3	2	2	2	1	2	1	1	2	2	2	3	3	2	3	
CO4	3	2	2	2	1	2	1	1	2	2	2	3	3	2	3	
CO5	3	2	2	2	1	2	1	1	2	2	2	3	3	2	3	

GE1003 PROFESSIONAL ETHICS IN ENGINEERING L

L T P C 3 0 0 3

Objectives

- To create awareness on professional ethics and human values
- To create awareness on engineering ethics providing basic knowledge about engineering ethics, variety of moral issues, inquiry and virtues.
- To provide basic familiarity about engineers as responsible experimenters and codes of ethics
- To inculcate knowledge and exposure on safety, risk and rights of an employee

UNIT – I HUMAN VALUES

Morals, values and Ethics; Integrity; Work ethics; Service learning; Civic virtue; Respect for others; Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Character; Spirituality; Introduction to Yoga and meditation for professional excellence and stress management.

UNIT – II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues, Types of inquiry, Moral dilemmas, Moral Autonomy, Kohlberg's theory; Gilligan's theory; Consensus and Controversy; Models of professional roles; Theories about right action; Self–interest; Customs and Religion; Uses of Ethical Theories.

UNIT – III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters; Codes of Ethics; Balanced Outlook on Law.

UNIT – IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk, Risk Benefit Analysis and Reducing Risk; Respect for Authority; Collective Bargaining; Confidentiality; Conflicts of Interest; Occupational Crime; Professional Rights; Employee Rights; Intellectual Property Rights (IPR), Discrimination.

UNIT – V GLOBAL ISSUES

Multinational Corporations; Environmental Ethics; Computer Ethics; Weapons Development; Engineers as Managers – Consulting Engineers, Engineers as Expert Witnesses and Advisors; Moral Leadership; Code of Conduct; Corporate Social Responsibility.

Total Periods: 45

9

9

9

9

9

Text Books:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2012.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 8th edition,2017.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.

- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd, New Delhi, 2013.
- 6. World Community Service Centre, "Value Education", Vethathiri publications, Erode, 2011.

Course	e Outcomes (CO)
CO1	Define the dimensions or senses of engineering ethics and describe the various theories of
	moral development.
CO2	Describe the similarities and contrast of engineering experiments Vs scientific experiments
	and to define the code of ethics of various professional societies.
CO3	Understand significance of safety and risk assessment when developing engineering products.
CO4	Understand the social responsibilities and intellectual property rights of engineers.
CO5	Understand the process of how a multinational company works and to describe about the role
	of engineers in computer ethics, environment ethics, and weapons development

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	1	2	3	2	2	3	2	3	2	2	3	2	1	1	3			
CO2	1	2	3	2	2	3	2	3	2	2	3	2	1	1	3			
CO3	1	2	3	2	2	3	2	3	2	2	3	2	1	1	3			
CO4	1	2	3	2	2	3	2	3	2	2	3	2	1	1	3			
CO5	1	2	3	2	2	3	2	3	2	2	3	2	1	1	3			

MG1001	PRINCIPLES OF MANAGEMENT I	T	ΓΡ							
Objectives										
• To enable the	ne students to study the evolution of Management.									
• To study the	e functions and principles of management.									
• To learn the	application of the principles in an organization.									
• To acquire	the skills of effective leadership and communication.									
• To gain the	knowledge of tools and techniques for an effective managerial skill.									
_										
UNIT – I I	NTRODUCTION TO MANAGEMENT AND ORGANIZATION	S		9						

Definition of Management – Science or Art – Manager Vs Entrepreneur – Types of managers – managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization – Sole proprietorship, partnership, company – Public and private sector enterprises – Organization culture and Environment – Current trends and issues in Management.	C01
UNIT – II PLANNING	9
Nature and purpose of planning – Planning process – Types of planning – Objectives – Setting objectives – Policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.	CO 2
UNIT – III ORGANISING	9
Nature and purpose – Formal and informal organization – Organization chart – Organization structure – Types – Line and staff authority – Departmentalization – Delegation of authority – Centralization and decentralization – Job Design – Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.	CO3
UNIT – IV DIRECTING	9
Foundations of individual and group behaviour – Motivation – Motivation theories – Motivational techniques – Job satisfaction – Job enrichment – Leadership – Types and theories of leadership – Communication – Process of communication – Barrier in communication – Effective communication – Communication and IT.	CO4
UNIT – V CONTROLLING	9
System and process of controlling – Budgetary and non–budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.	CO5
Total Periods:	45
	-
 Text Books: JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Preducation, 2004. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India), Pvt. Ltd Edition, 2020. 	
Reference Books: 1. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hil	l, 10 th
 Edition, 2015. 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008. 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Manager 11th Edition, Pearson Education, 2017. 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 6th Edition 2th 	
Course Outcomes (CO)	

CO1	Ability to understand the various terms and definitions related to management and
001	organization.
000	0
CO2	Ability to acquire the skill of planning and various strategies of management in an
	organization.
CO3	Ability to understand the various hierarchies of management and also get an insight into an
	HR values in an organization management.
CO4	Ability to acquire the skills of leadership and understand the importance of communication to
	run an organization effectively.
CO5	Ability to analyse the risk related to budget and methods to handle the risk with help of
	technology to manage an organization.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course					Program Specific Outcomes										
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	1	2	2	2	2	2	3	3	3	3	3	1	1	1
CO2	1	2	2	2	3	3	3	3	3	3	3	3	1	1	1
CO3	2	2	2	2	3	2	2	3	3	3	3	3	1	1	1
CO4	1	1	2	2	3	3	3	3	3	3	3	3	1	1	1
C05	3	3	3	3	3	3	3	3	3	3	3	3	1	2	1

CE1025	DISASTER MANAGEMENT	L	Т	Р	C
	(Common to EEE,ECE,IT)	3	0	0	3

Objectives

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR).
- To enhance awareness of institutional processes in the country.
- To develop rudimentary ability to respond to their surroundings with potential disaster

response in areas where they live, with due sensitivity UNIT - I INTRODUCTION TO DISASTERS 9 Definition - Disaster, Hazard, Vulnerability, Resilience, Risks; Disasters- Types of disasters, Earthquake, Landslide, Flood, Drought, Volcanoes, Forest fire, Manmade disaster; Causes, Impacts including social, economic, political, environmental, health, psychosocial; Differential **CO1** impacts - in terms of caste, class, gender, age, location, disability; Global trends in disasters urban disasters, pandemics, complex emergencies, Climate change; Dos and Don'ts during various types of Disasters. UNIT - II APPROACHES TO DISASTER RISK REDUCTION (DRR) 9 Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness; Structural, non-structural measures; Community based DRR; Roles and responsibilities of community. Panchayat Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre & other stake **CO2** holders; Institutional Processes and Framework at State and Central Level; State Disaster Management Authority(SDMA); Early Warning System, Advisories from appropriate agencies. UNIT - III **INTER- RELATIONSHIP BETWEEN DISASTERS AND** 9 **DEVELOPMENT** Factors affecting Vulnerabilities; Differential impacts; Impact of Development projects such as dams, embankments, changes in Land-use ; Climate Change Adaptation- IPCC Scenario and **CO3** Scenarios in the context of India; Relevance of indigenous knowledge, appropriate technology and local resources. UNIT - IV **DISASTER RISK MANAGEMENT IN INDIA** 9 Hazard and Vulnerability profile of India; Components of Disaster Relief- Water, Food, Sanitation, Shelter, Health, Waste Management; Institutional arrangements Mitigation, Response and Preparedness, Disaster Management Act and Policy, Other related policies, **CO4** plans, programmes and legislation; Role of GIS and Information Technology components in preparedness, Risk assessment, Response and recovery phases of disaster ;Disaster damage assessment. UNIT - V **DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES** 9 **AND FIELD WORKS** Landslide hazard zonation - Case Studies; Earthquake vulnerability assessment of buildings and Infrastructure- Case Studies; Drought assessment - Case Studies; Coastal Flooding - Storm surge assessment; Floods - Fluvial and Pluvial Flooding Case Studies; Forest Fire - Case **CO5** Studies; Man Made disasters - Case Studies; Space based inputs for disaster mitigation and management and field works related to disaster management. **Total Periods:** 45 **Text Books:** 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13:978-9380386423. 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361.

- 3. Gupta Anil K, Sreeja S. Nair," Environmental Knowledge for Disaster Risk Management" NIDM, New Delhi, 2011.
- 4. Kapur Anu, "Vulnerability India: A Geographical Study of Disasters" IIAS and Sage Publishers, New Delhi, 2010.

Reference Books:

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

Course Outcomes (CO):

004150	
CO1	Differentiate the types of disasters, causes and their impact on environment and society.
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation.
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster
	damage assessment and management.
CO4	Understand the disaster risk management process in India.
CO5	Acquire knowledge on disaster management applications and case studies.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outo	comes	1				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	1	2	1	1	2	2	1	1	1	2	2	2	2	2	
CO2	1	2	1	1	1	2	2	1	1	1	2	2	2	2	2	
CO3	1	1	1	1	2	2	2	1	1	1	2	2	2	2	2	
CO4	1	1	1	1	2	1	1	1	1	1	2	2	2	2	2	
CO5	2	1	1	1	2	2	2	1	1	1	2	2	2	2	2	

MG1002	OPERATIONAL RESEARCH	L	Т	Р	С
		3	0	0	3
Objectives					
making. • To study transportat	and formulate real-life problem for modelling, solving and apply the formulation and various methods of solutions for linear ion, assignment, CPM and PERT problems problems using dynamic programming method	U			
UNIT - I	LINEAR MODELS				

156

	perations research-Linear programming problems (LPP)-Graphical method-	
	Big M Method-Dual simplex method-Primal Dual problems -Dual theory and	CO1
Sensitivity analysi	IS	
UNIT – II	TRANSPORTATION MODELS	9
Transporta problems than the	ation and assignment problems-Applications (Emphasis should be more on ory)	CO2
UNIT – III	NETWORK MODELS	9
CPM / PERT-Ne	th problem: Dijkstra's algorithms, Floyd's algorithm, systematic method – twork diagram-Events and activities-Project Planning-Reducing critical events ical path calculations-example-Sequencing problems.	CO 3
UNIT – IV	DECISION MODELS AND INVENTORY MODELS	9
models-various co	blems-Capital equipment-Discounting costs-Group replacement. Inventory osts- Deterministic inventory models-Economic lot size-Stochastic inventory iod inventory models with shortage cost.	CO 4
UNIT – V	QUEUING MODELS	9
	Queuing Models – Single and multi server models Poisson Queues - $(M / M /)$, $(M / M / 1) : (FIFO / N / \infty)$, $(M / M / C) : (FIFO / \infty / \infty)$, $(M / M / C) :$	CO5
	Total Periods:	45
Text Books:		
1. H. A. Taha 2. F. S. Hille	a, operational research-An introduction, Macmillan, 1976 r and G. J. Liebermann, Introduction to operational research (7th edition) et, Introduction to operational research-A computer oriented algorithmic app Hill, 1989	roach,
4. H. M. Wa	gner, Principles of operational research with applications to managerial decision	s, PH,

Reference Books:

Inc, 1975

- 1. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
- 4. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 5. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.
- 6. J. C. Pant, 'Introduction to Optimisation: Operations Research', Jain Brothers, Delhi, 2008.
- 7. Pannerselvam, 'Operations Research', Prentice Hall of India 2010.

Course	Outcomes (CO)
CO1	To analyze the problems in engineering, management or business environment, focusing on
CO1	important details
CO2	To formulate real problems in terms of input-output parameters relationships and identify the
02	solution procedure
CO3	To understand the concept of network and project planning
CO4	To understand the inventory management in manufacturing context
CO5	To understand the application of queuing theory in real world

Course Outcomes					Pro	gram	Outc	omes					S	Program Specific Outcomes			
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	3	3	2	1	1	1	0	0	0	0	1	2	1	1	1		
CO2	3	3	2	1	1	1	0	0	0	0	1	2	3	3	3		
CO3	3	3	2	0	1	1	0	0	0	0	1	2	3	3	3		
CO4	3	3	2	0	1	1	0	0	0	0	1	2	3	3	3		
C05	3	3	2	1	1	1	0	0	0	0	1	2	3	3	3		

MG1002	PRINCIPLES OF OPERATION RESEARCH	L	Т	Р	С
		3	0	0	3

Objectives

• To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

9

9

9

UNIT - I LINEAR MODELS

The phase of an operation research study – Linear programming – Graphical method– Simplex algorithm – Duality formulation – Sensitivity analysis.

UNIT – II TRANSPORTATION MODELS AND NETWORK MODELS

Transportation Assignment Models – Traveling Salesman problem– Networks models – Shortest route – Minimal spanning tree – Maximum flow models –Project network – CPM and PERT networks – Critical path scheduling – Sequencing models.

UNIT – III INVENTORY MODELS

Inventory models – Economic order quantity models – Quantity discount models – Stochastic inventory models – Multi product models – Inventory control models in practice.

	V Q	UEU	EINC	G MO	DEL	S								9
							struct	ures -	- Not	ation	para	meter	– Single server	
													nt rate service –	
Infinite po					-	-	-							
UNIT – V		ECIS												9
													phical solution-	
													Models based on	COS
					single	e / N	Iulti	varia	bility	sear	ch te	echnic	que – Dynamic	
Programm	lllg - Sl		FIODI	em.										
													Total Periods:	45
Fext Book	KS:													
	llier and	Libeł	berma	n, "O	perat	ions I	Resea	rch",	Hold	en Da	y, 20	05		
													ia, 2003.	
Reference														
		J., Jar	vis ar	nd Sh	erali	H., "I	Linea	r Prog	gramr	ning	and N	Jetwo	rk Flows", John	Wiley
200														
													Lichard D Irwin,	1990.
	ilip D.T.													
	-	G.V.	and S	rivast	tava I	J.K.,	"Ope	ratior	n Res	earch	for N	lanag	gement", Wiley E	lastern
199							- 1					• • • •		
5. Tu	lsian and	d Pasc	ley V	., "Qı	iantita	ative	Tech	nques	s", Pe	arson	Asıa	, 2002	2.	
0 0														
Course O														
		<u> </u>	<u> </u>	1 1		ст.			•					1.1
	oply form	nulati	on an										actical application	
res	oply form source al	nulati llocati	on an ions a	nd in	terpre	t the	result	with	conc	ept of	dual	ity an	d Sensitivity ana	
res CO2 Ge	oply form source al et the sol	nulati locati ution	on an ions a for tr	nd int anspo	terpre ortatic	et the	result blem	with s and	conc proje	ept of ect ma	dual	ity an ment	d Sensitivity anal problems	lysis.
res CO2 Ge CO3 Ha	oply form source all et the sol	nulati locati ution	on an ions a for tr	nd int anspo	terpre ortatic	et the	result blem	with s and	conc proje	ept of ect ma	dual	ity an ment	d Sensitivity ana	lysis.
CO2 Ge CO3 Ha sit	oply form source all et the sol andle an uations.	nulati llocati ution d stu	on an ions a for tr dy th	nd int anspo e inv	terpre ortatic entor	et the son pro-	result blem dels,	with s and whic	conc proje h is	ept of ect ma	dual duage able	ity an ment in en	d Sensitivity anal problems gineering and b	lysis. usines
CO2 Ge CO3 Ha sit CO4 Fo	oply form source al et the sol andle an uations.	nulati llocati ution d stud	on an ions a for tr dy th	nd intranspo e inv	terpre ortatic entor s, upo	on pro y mo	result blem dels,	with s and whic	conc proje h is	ept of ect ma	dual duage able	ity an ment in en	d Sensitivity anal problems	lysis. usines
CO2 Ge CO3 Ha sit CO4 Fo	oply form source all et the sol andle an uations.	nulati llocati ution d stud	on an ions a for tr dy th	nd intranspo e inv	terpre ortatic entor s, upo	on pro y mo	result blem dels,	with s and whic	conc proje h is	ept of ect ma	dual duage able	ity an ment in en	d Sensitivity anal problems gineering and b	lysis. usines
CO2 Ge CO3 Ha sit CO4 Fo app	oply form source al et the sol andle an uations.	nulati llocati ution d stud Queu as thro	on an ions a for tr dy th uing n ough s	nd intranspo e inv nodel simula	terpre ortatio entor s, upo ation.	et the son pro- y mo	result blem dels, idy th	with s and which which	conc proje h is ution	ept of ect ma inevit of th	dual nage able e san	ity an ment in en	d Sensitivity anal problems gineering and b	lysis. usines
CO2 Ge CO3 Ha sit CO4 Fo app	oply form source al et the sol andle an uations. ormulate plication	nulati llocati ution d stud Queu as thro	on an ions a for tr dy th uing n ough s	nd intranspo e inv nodel simula	terpre ortatio entor s, upo ation.	et the son pro- y mo	result blem dels, idy th	with s and which which	conc proje h is ution	ept of ect ma inevit of th	dual nage able e san	ity an ment in en	d Sensitivity anal problems gineering and b	lysis. usiness
CO2 Ge CO3 Ha sit CO4 Fo app	oply form source al et the sol andle an uations. ormulate plication nalysis th	ution d stud Queu ns thro ne dec	on an ions a for tr dy th iing n ough s	nd intranspo e inv nodel simula maki	terpre ortatic entor s, upo ation. ng pr	et the son pro- y mo- on stu- ocess	result blem dels, idy th throu	with s and whic ne sol	conceproje proje h is ution	ept of ect ma inevit of th heory	dual nage able e san	ity an ment in en ne. A	d Sensitivity anal problems gineering and b	lysis. usines
CO2 Ge CO3 Ha sit CO4 Fo app	oply form source al et the sol andle an uations. ormulate plication nalysis th	ution d stud Queu ns thro ne dec	on an ions a for tr dy th iing n ough s	nd intranspo e inv nodel simula maki	terpre ortatic entor s, upo ation. ng pr	et the son pro- y mo- on stu- ocess	result blem dels, idy th throu	with s and whic ne sol	conceproje proje h is ution	ept of ect ma inevit of th heory	dual nage able e san	ity an ment in en ne. A	d Sensitivity anal problems gineering and b also handle the r UTCOMES	lysis. usiness eal life
CO2 Ge CO3 Ha sit CO4 Fo app	oply form source al et the sol andle an uations. ormulate plication nalysis th MAPP	ution d stud Queu ns thro ne dec	on an ions a for tr dy th iing n ough s	nd intranspo e inv nodel simula maki	terpre ortatic entor s, upo ation. ng pr OUT	et the son pro- on pro- y mo- on stu- ocess CON	result oblem dels, udy th throu IES	with s and whic ne sol	conce proje h is ution ame the H PRO	ept of ect ma inevit of th heory	dual nage able e san	ity an ment in en ne. A	d Sensitivity anal problems gineering and b diso handle the re UTCOMES Program Speci	lysis. usiness eal life
res CO2 Ge CO3 Ha situ CO4 Fo apj CO5 Ar	pply form source al et the sol andle an uations. ormulate plication nalysis th MAPP e e es	Queu s thro NG	on an ions a for tr dy th uing n ough s cision	nd intranspo e inv nodel simula maki RSE	terpre ortatic entor s, upo ation. ng pr OUT Prog	et the son pro- on pro- y mo- on stu- ocess COM gram	result oblem dels, idy th throu IES	with s and whic ne sol agh ga WITH omes	conce proje h is ution ame the I PRO	ept of ect ma inevit of th heory D GR	è dual mage cable e san AMN	ity an ment in en ne. A 1E O	d Sensitivity anal problems gineering and b also handle the re UTCOMES Program Spect Outcomes	lysis. usiness eal life
CO2 Ge CO3 Ha siti CO4 Fo ap CO5 Ar COUTSE Outcom	pply form source al et the sol andle an uations. ormulate plication nalysis th MAPP e es a	ulati llocati ution d stud S thro ne dec ING	on an ions a for tr dy th uing n ough s cision COU	nd intranspo e inv nodel simula maki	terpre ortatic entor s, upo ation. ng pr OUT	et the son pro- on pro- y mo- on stu- ocess CON	result oblem dels, udy th throu IES	with s and whic ne sol ngh ga	conce proje h is ution ame the H PRO	ept of ect ma inevit of th heory	dual nage able e san	ity an ment in en ne. A IE O	d Sensitivity anal problems gineering and b diso handle the re UTCOMES Program Speci	lysis. usiness eal life
CO2 Ge CO3 Ha sit CO4 Fo app CO5 Ar	pply form source al et the sol andle an uations. ormulate plication nalysis th MAPP e e es	Queu s thro NG	on an ions a for tr dy th uing n ough s cision	nd intranspo e inv nodel simula maki RSE	terpre ortatic entor s, upo ation. ng pr OUT Prog	et the son pro- on pro- y mo- on stu- ocess COM gram	result oblem dels, idy th throu IES	with s and whic ne sol agh ga WITH omes	conce proje h is ution ame the I PRO	ept of ect ma inevit of th heory D GR	è dual mage cable e san AMN	ity an ment in en ne. A 1E O	d Sensitivity anal problems gineering and b also handle the re UTCOMES Program Spect Outcomes	lysis. usiness eal life
CO2 Ge CO3 Ha siti CO4 Fo ap CO5 Ar COUTSE Outcom	pply form source al et the sol andle an uations. ormulate plication nalysis th MAPP e es a	ulati llocati ution d stud S thro ne dec ING	on an ions a for tr dy th uing n ough s cision COU	nd intransporter investment inves	terpre ortatic entor s, upo ation. ng pr OUT Prog e	t the son pro- on pro- y mo- on stu- ocess COM gram	result oblem dels, idy th throu IES	with s and whic ne sol agh ga WITH omes	conce proje h is ution ame the I PRO	ept of ect ma inevit of th heory D GR	f dual inage able e san AMN	ity an ment in en ne. A IE O	d Sensitivity anal problems gineering and but also handle the re- UTCOMES Program Spect Outcomes 1 2	lysis. usines eal life

CO3	3	3	2	0	1	1	_	_	-	_	1	2	3	3	3	
CO4	3	3	2	0	1	1	-	-	-	-	1	2	3	3	3	
C05	3	3	2	1	1	1	I	-	-	-	1	2	3	3	3	

GE1002	HUMAN RIGHTS	L	Т	Р	С
		3	0	0	3
Objectives					
To sensiti	ze the Engineering students to various aspects of Human Rights.				
UNIT - I	INTRODUCTION				9
Human Rights- M	leaning, origin and development; Notion and classification of Rights -	- Nat	tural,	,	
Moral and Lega	l Rights, Civil and Political rights, economic, social and cultura	al ri	ghts,	C	01
collective/ Solida	rity rights.		-		

UNIT - II **EVOLUTION OF HUMAN RIGHTS MOVEMENT**

Evolution of the concept of Human rights- Magana Carta, Geneva Convection of 1864, **CO2** Universal Declaration of Human rights 1948; Theories of Human rights.

INTERNATIONAL PRESPECTIVES UNIT - III

Theories and perspective of UN Laws; UN Agencies to monitor and compliance.

UNIT - IV **HUMAN RIGHTS IN INDIA**

Human Rights in India; Constitutional Provisions/ Guarantees.

UNIT – V HUMAN RIGHTS SUPPORT ORGANISATION

Human Rights of Disadvantaged People - Women, Children, Displaced persons and Disable persons, including aged and HIV infected people; Implementation of Human Rights - National **CO5** and State Human Rights Commission; Judiciary; Role of NGO's, Media, Educational Institutions, Social Movements.

Total Periods:

9

9

9

9

CO3

CO4

45

Reference Books:

- 1. Kapoor S.K., "Human Rights under International law and Indian laws", Central law agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad law agency, Allahabad, 2014.
- 3. Upendra Baxi, The future of Human Rights, Oxford University Press, New Delhi.

Course Outcomes (CO)

CO1 Able to understand the definition and types of human rights

CO2	Able to understand the evolution and theories of human rights
CO3	Able to understand the theories and perspectives of human rights
CO4	To know about human rights in India
CO5	To know about human rights of people of various classes and implementation of human
	rights

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outc	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	
CO2	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	
CO3	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	
CO4	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	
CO5	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	

PROFESSIONAL ELECTIVE – VI (VIII SEMESTER)

GE1004	FUNDAMENTALS OF NANOSCIENCE	L	Т	Р	C
		3	0	0	3
Objectives					
To learn about	basis of nanomaterial science, preparation method, types and applicatio	n.			
UNIT - I	INTRODUCTION				9
Engineering- C films multi lay Electronic, Op	ence and Technology- Implications for Physics, Chemistry, Biolo lassifications of nanostructured materials- quantum dots, nano wires-u ered materials. Length Scales involved and effect on properties: Med otical, Magnetic and Thermal properties. Introduction to propert study (qualitative only).	ultra char	-thir	n , C	CO1
UNIT - II	GENERAL METHODS OF PREPARATION				9
Milling, Collo	nthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Me idal routes, Self-assembly, Vapour phase deposition, MOCVD, Sp folecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.				CO2
UNIT - III	NANOMATERIALS				9
carbon Nanotu synthesis(arc-g	Carbon - Buckminster fullerene- graphene and carbon nanotube, Sin bes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- met rowth, laser ablation, CVD routes, Plasma CVD), structure- applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nano	thoc proj	ls of perty	$\int_{7}^{f} \mathbf{C}$	CO3

CaO, AgTiO2, Ferrites, Nanoclays functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications.

UNIT -	· IV	CHARACTERIZATION TECHNIQUES	9
		tion technique, Scanning Electron Microscopy - environmental techniques,	
Transm	ission	Electron Microscopy including high-resolution imaging, Surface Analysis	CO4
techniq	ues- A	FM, SPM, STM, SNOM, ESCA, SIMS-Nano indentation.	
UNIT -		APPLICATIONS	9
nanocry medicir (MEMS	ystal, N nes, T S), Nan al inhit	ch: Information storage- nanocomputer, molecular switch, super chip, Nano biotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano argetted drug delivery, Bioimaging - Micro Electro Mechanical Systems to Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell,	COS
<u>outtory</u> .		Total Periods:	45
Text B	ooks		
Referen 1. G Ti 2. Akh	nce Bo imp, "N lesh La	, Wiley-VCH, 2000. oks: Janotechnology", AIP press/Springer, 1999. ikhtakia,"The Hand Book of Nano Technology, Nanometer Structure, Theory, Mo tions". Prentice-Hall of India (P) Ltd, New Delhi, 2007.	deling
and	Silliula	tions . I tentee-fran of mula (1) Etd, New Denn, 2007.	
Course	Outco	omes (CO)	
CO1		ty to understand the concept of Nano scale Science and Technology and various ty	pes of
		materials.	•
CO2	Abili	ty to acquire knowledge in general methods of preparation of nano materials.	
CO3		ty to understand the Nano forms of Carbon and methods of synthesis	
CO4		ty to acquire knowledge in characteristic nanomaterial on various technique.	
CO5		ty to gain knowledge on various application of nano materials.	
	M	APPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES	• 6•
Cou	rse	Program Outcomes Program Spec	nfic

Course Outcomes					Pro	gram	Out	comes	5				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	L	1	2	3	
CO1	3	2	2	3	1	2	1	1	2	1	1	3	2	2	3	
CO2	3	2	3	3	1	2	1	1	2	1	1	3	3	2	3	
CO3	3	3	3	3	1	2	1	1	2	1	1	3	3	2	3	

CO4	3	3	3	3	1	2	1	1	2	1	2	3	3	2	3	
CO5	3	2	3	3	1	2	1	1	2	1	2	3	3	2	3	

EI1861	NON-LINEAR CONTROL SYSTEMS	L	Т	Р	С
		3	0	0	3
COURSE OF					
•	To understand the nature of non-linear systems and	nd to ana	alyze the	stability	of sucl
	systems				
•	To develop suitable models of non-linear systems	and to c	levelop s	uitable	
	controllers for such systems	C	1'		
•	To understand the chaotic and bifurcation behavio	or of non	-linear s	ystems	
•	To linearize the non-linear systems				
Unit-I	NON-LINEAR SYSTEMS		NT	1'	9
ypes of Non	Linearity – Typical Examples – Properties of nonlin	lear syst	ems - Netroine	onlinear	
	uations - Numerical solutions to nonlinear differenti	al equat	ions – E	quilibriu	n poin
- free and for	ced responses – Input and output multiplicities.				
Unit-II	STABILITY OF NON-LINEAR SYSTEMS				9
	ymptotic stability – Phase plane analysis (analytical a				
	bility Criteria – Krasovskil's method – Variable Gra	dient Me	ethod – S	Stability A	Analys
by Describing	function method.				
Unit-III	MODELLING AND CONTROL OF NON-LIN				9
	onlinear systems - Hammerstein and Wiener models				
		$\mathfrak{s} = Non$	inear PL	D contro	ller –
	– On-line parameter estimation for nonlinear system	5 – NOIL			
	 On-line parameter estimation for nonlinear system ng control – case studies 	.s — 11011			
Gain scheduli	ng control – case studies	5 – TOIL			
Gain scheduli U nit-IV	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR				9
Gain scheduli U nit-IV Introduction to	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B	ifurcatio	on Behav	ior of or	9
Gain scheduli U nit-IV Introduction t	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR	ifurcatio	on Behav	ior of or	9
Gain scheduli U nit-IV Introduction t differential eq	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR O Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav	ifurcatio	on Behav	ior of or	9 dinary
Gain scheduli Unit-IV Introduction t differential eq	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B	ifurcatio	on Behav	ior of or	9
Gain scheduli U nit-IV Introduction t differential eq U nit-V	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav LINEARIZATION	ifurcation ior and l	on Behav Hopf Bif	ior of ore urcation.	9 dinary 9
Gain scheduli Unit-IV Introduction t differential eq Unit-V Methods of lin	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav LINEARIZATION nearization – Taylor's series expansion – Jacobean m	ifurcation ior and l	on Behav Hopf Bif	ior of oro urcation. del for sy	9 dinary 9 /stems
Gain scheduli Unit-IV Introduction to differential eq Unit-V Methods of lin Role of Eigen	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behave LINEARIZATION Dearization – Taylor's series expansion – Jacobean m values and Eigenvectors – State transition matrix an	ifurcation ior and l	on Behav Hopf Bif	ior of oro urcation. del for sy	9 dinary 9 /stems
Gain scheduli Unit-IV Introduction to differential eq Unit-V Methods of lin Role of Eigen	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav LINEARIZATION nearization – Taylor's series expansion – Jacobean m	ifurcation ior and l	on Behav Hopf Bif	ior of oro urcation. del for sy	9 dinary 9 /stems
Gain scheduli Unit-IV Introduction to differential eq Unit-V Methods of lin Role of Eigen	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behave LINEARIZATION Dearization – Taylor's series expansion – Jacobean m values and Eigenvectors – State transition matrix an	ifurcation ior and l nethod - d its pro	on Behav Hopf Bif state mo perties –	ior of ord urcation. del for sy Control	9 dinary 9 ystems lability
Gain scheduli Unit-IV Introduction to differential eq Unit-V Methods of lin Role of Eigen	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behave LINEARIZATION Dearization – Taylor's series expansion – Jacobean m values and Eigenvectors – State transition matrix an	ifurcation ior and l nethod - d its pro	on Behav Hopf Bif state mo perties –	ior of oro urcation. del for sy	9 dinary 9 ystems lability
Gain scheduli Unit-IV Introduction t differential eq Unit-V Methods of lin Role of Eigen and observabi	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav LINEARIZATION nearization – Taylor's series expansion – Jacobean m values and Eigenvectors – State transition matrix an lity – Stabilizability and Detectability	ifurcation ior and l nethod - d its pro	on Behav Hopf Bif state mo perties –	ior of ord urcation. del for sy Control	9 dinary 9 ystems lability
Gain scheduli Unit-IV Introduction to differential eq Unit-V Methods of lin Role of Eigen and observabi	ng control – case studies CHAOS AND BIFURCATION BEHAVIOR Chaos - The Lorenz Equations – Test for chaos - B uations - Types of Bifurcations - Limit Cycle Behav LINEARIZATION nearization – Taylor's series expansion – Jacobean m values and Eigenvectors – State transition matrix an lity – Stabilizability and Detectability	ifurcation ior and l nethod - d its pro	on Behav Hopf Bif state mo perties –	ior of ord urcation. del for sy Control	9 dinary 9 ystems lability

CO1	Ability to apply mathematical knowledge and basics of science and engineering to
	develop model for non-linear system.
CO2	Ability to analyze non-linear system based on the first principle model.
CO3	Ability to come out the solution for complex non-linear system.
CO4	Ability to develop various control schemes for non-linear systems.
C05	Ability to linearize non-linear system for developing linear control.
TEXT BOO	
1.	Hangos, K.M., Bokor, J., and Szederkrnyi, G., "Analysis and control of Non-linear Process systems".
2.	Gopal, M., "Digital Control and State Variable Methods: Conventional and Intelligent Control
	Systems", Fourth Edition, Tata McGraw-Hill, 2012.
REFERENC	'FS
<u>1.</u>	Shankar Sastry, "Nonlinear Systems: Analysis, Stability, and Control", Springer
1.	New York, 2013.
2.	Bequette, B.W., "Process Control Modeling, Design and Simulation", Prentice Hall of India, 2008.
3.	Bequette, B.W., "Process Control: Modeling, Design and Simulation", Prentice Hall International series in Physical and Chemical Engineering Sciences, 2003.
4.	Steven E. LeBlanc, and Donald R. Coughanowr, "Process Systems Analysis and Control", 3 rd Edition, Chemical Engineering series, McGraw-Hill Higher Education, 2009.
5.	5. Thompson, J. M. T., and Stewart, H. B.," Nonlinear Dynamics and Chaos", John Wiley & Sons, 2002.
6.	William S. Levine, "The Control Systems Handbook", Second Edition: Control System Advanced Methods, 2nd Edition, CRC Press, 2010.
7.	NPTEL Lecture on "Non-linear system Analysis" by Prof. Laxmidhar Behera, IIT Kanpur.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Prog	ram (Outco	omes					Program Specific Outcomes			
Outcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	1	2	3	1	1	0	0	0	0	1	0	1	2	2	0	
CO2	1	2	2	1	1	0	0	0	0	1	0	1	2	2	0	
CO3	1	2	2	1	1	0	0	0	0	1	0	1	2	2	0	

CO4	1	2	1	1	1	0	0	0	0	1	0	1	2	2	0
CO5	1	2	3	1	1	0	0	0	0	1	0	1	2	2	0

EI1862	UNIT OPERATION AND CONTROL	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

•	Study the unit operations involved for transportation, mixing and separation of solids.
•	Study the unit operations involved for transportation, mixing and separation of fluids.
•	Understand the basic operations involved with heat exchangers, Distillation and chemical reactions.
•	Gain knowledge about the operations of evaporators and crystallizers, drying and cooling towers.
•	Gain knowledge on the operation of dryers, distillation column, refrigerators and chemicalreactors.

UNIT I MECHANICAL OPERATIONS- I: OPERATIONS ON SOLIDS

9

9

9

General Characteristics of solids; Storage and conveying of solids:bunkers, silos, bins and hoppers, transport of solids in bulk, conveyor selection, different types of conveyors; Estimation of particle size;Screening methods and equipment; Adjusting particle size:methods of size reduction, classification of equipment, crushers, grinders; size enlargement; Principle of granulation, briquetting, pelletisation and flocculation; Mixing: mixing of powders; Separation: Electrostatic and magnetic separators, applications.

UNIT II MECHANICAL OPERATIONS-II: OPERATIONS ON FLUIDS

Transport of fluids; Mixing and agitation: Mixing of liquids, selection of suitable mixers; Separation: Gravity settling, sedimentation, thickening, double cone classifier, centrifugal separation; Cyclones -Operation, equipment, control and applications.

UNIT III

HEAT TRANSFER- I AND ITS APPLICATIONS

Heat exchangers: Single pass and multi pass heat exchangers, condensers, reboilers Combustion process in thermal power plant; Distillation: Binary distillation, Batch distillation, controls and operations, Chemical reactors.

UNIT IV

HEAT TRANSFER- II

Theory of evaporation; single effect and multiple effect evaporators; Crystallization; nucleation and growth, classification of crystallizers; Drying: classification of Dryers, batch and continuous dryers, dryers for solids and slurries and cooling Towers, Refrigeration.

UNIT V

CASE STUDY

9

9

Unit Operations and Control schemes applied to Thermal Power plant, Steel Industry, Paper and Pulp Industry, Leather Industry.

TOTAL (L: 45): 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Apply the knowledge on solids & fluids to handle the raw materials.
CO2	Select and apply relevant handling techniques to convert the solids and fluids for specific applications.
CO3	Come out with solutions for simple/complex problems in heat transfer and design the heatexchange equipment for different applications such as distillation, boilers.
CO4	Able to carry out multidisciplinary projects using heat transfer, mass transfer concepts.
CO5	Gain ability for lifelong learning of new techniques and developments in various types of unit operations in industries.

TEXT BOOKS

- 1. Balchen, J.G., and Mumme, K.J., "Process Control structures and applications", Van Nostrand Reinhold Co., New York, 1988.
- 2. Warren L. McCabe, Julian C. Smith and Peter Harriot, "Unit Operations of Chemical Engineering", McGraw-Hill International Edition, New York, Sixth Edition, 2001.
- **3.** James R.couper, Roy Penny, W., James R.Fair and Stanley M.Walas, "Chemical Process Equipment: Selection and Design", Gulf Professional Publishing, 2010.

REFERENCES

1. Waddams, A.L., "Chemicals from petroleum", Butler and Taner Ltd., UK, 1968.

2. Liptak, B.G., "Process measurement and analysis", Chilton Book Company, USA, 1995.

3. Luyben W.C., "Process Modeling, Simulation and Control for Chemical Engineers", McGraw-Hill International edition, USA, 1989.

Course Outcomes					Pro	gram	Outo	omes					Program Specific Outcomes			
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3	
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

EI1863	CYBER SECURITY FOR INDUSTRIAL AUTOMATION	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

•	To understand the Industrial security environment and cyberattacks
•	To analyze and assess risks in the industrial environment
•	To access, design and implement cybersecurity
•	To test and troubleshoot the industrial network security system

UNIT I	INTRODUCTION	9
Industrial securi	ty environment-Industrial automation and control system (IACS) culture Vs IT Paradi	gms-
Cyberattacks: T	nreat sources and steps to successful cyberattacks.	
UNIT II	RISK ANALYSIS	9
Risk identificati	on, classification and assessment, Addressing risk:Cybersecurity Management	
System(CSMS),	organizational security, physical and environmental security, network	
segmentation, ac	ccess control, risk management and implementation.	

UNIT III ACCESSING THE CYBERSECURITY OF IACS

Identifying the scope of the IACS- generation of cybersecurity information-identification of vulnerabilities- risk assessment-evaluation of realistic threat scenarios- Gap assessment-capturing Ethernet traffic- documentation of assessment results

UNIT IV CYBERSECURITY DESIGN AND IMPLEMENTATION

Cybersecurity lifecycle- conceptual design process- detailed design process- firewall designremote access design- intrusion detection design

UNIT V	TESTING AND MAINTENANCE	9
Developing tes	t plans- cybersecurity factory acceptance testing- site acceptance testing- network	and
application dia	nostics and troubleshooting- cybersecurity audit procedure- IACS incident response	

TOTAL: 45

9

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to apply basis of science and engineering to understand Industrial security environment and cyberattacks.
CO2	Ability to analyze and assess risks in the industrial environment
CO3	Ability to access the cybersecurity of IACS
CO4	Ability to design and implement cyber security
CO5	Ability to test and troubleshoot the industrial network security system.

TEXT BOOKS

1.	Ronald L and Krutz, Industrial Automation and Control System Security Principles, ISA, 2013.
2.	David J.Teumim, Network Security, Second edition, ISA, 2010

REFERENCES

1.	Edward J.M. Colbert and Alexander Kott, Cyber-security of SCADA and other industrial control
	systems, Springer, 2016.
2.	Perry S. Marshalland John S. Rinaldi, Industrial Ethernet, Second edition, ISA, 2004

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outo	comes						ram S Dutcon	pecific 1es
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1														2

CO2	1	1								1
CO3	1	1								2
CO4	1		2	2						1
CO5	1		2					2		2

EI1864	ROBOTICS AND AUTOMATION	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

- To study the various parts of robots and fields of robotics.
- To study the various kinematics and inverse kinematics of robots.
- To study the Euler, Lagrangian formulation of Robot dynamics.
- To study the trajectory planning for robot.
- To study the control of robots for some specific applications.
- To educate on various path planning techniques
- To introduce the dynamics and control of manipulators

UNIT I BASIC CONCEPTS

Definition and origin of robotics – different types of robotics – various generations of robots – degrees of freedom – Robot classifications and specifications- Asimov's laws of robotics – dynamic stabilization of robots - **Introduction about Robotic languages.**

UNIT II POWER SOURCES, SENSORS AND ACTUATORS

Hydraulic, pneumatic and electric drives: Design and control issues – determination of HP of motor and gearing ratio – variable speed arrangements – path determination – micro machines in robotics – machine vision – ranging – laser – acoustic – magnetic, fiber optic and tactile sensors.

UNIT III MANIPULATORS AND GRIPPERS DIFFERENTIAL MOTION

Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations.

UNIT IV KINEMATICS AND PATH PLANNING

Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints–Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance Solution kinematics problem – robot programming languages.

9

9

uS

9

9

UNIT V DYNAMICS AND CONTROL AND APPLICATIONS

Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model – Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator. Mutiple robots – machine interface – robots in manufacturing and non- manufacturing applications – robot cell design – selection of robot.

TOTAL : 45 PERIODS

9

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Ability to understand the evolution of robot technology and its applications.
CO2	Ability to known the mathematical representation of different types of robots
CO3	Get exposed to the case studies and design of robot machine interface.
CO4	Familiarize various control schemes of Robotics control.
CO5	Ability to known various robots applications.

TEXT BOOKS

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore, 2015.
- **2.** Saeed B Niku, Introduction to Robotics, Analysis, Systems, Applications, Prentice Hall, 3 edition 2104.

REFERENCES

- **1.** Deb. S.R., Robotics technology and flexible Automation, John Wiley, USA 1992.
- 2. Asfahl. C.R., Robots and manufacturing Automation, John Wiley, USA 1992.
- 3. Klafter. R.D., Chimielewski T.A., Negin M., Robotic Engineering An integrated approach, Prentice Hall of India, New Delhi, 1994.
- **4.** R.K. Mittal and I.J.Nagrath, Robotics and Control, Tata McGraw Hill, New Delhi, 4th Reprint, 2005.
- **5.** John.J.Craig, Introduction to Robotics Mechanics and Control, Third edition, PearsonEducation,2009.
- 6. Issac Asimov, I Robot, Ballantine Books, New York, 1986.

Course Outcomes					Pro	gram	Outo	comes	1				Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	1	1	2	3	
CO1	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO2	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO3	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO4	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	
CO5	2	2	1	1	1	-	-	-	-	-	-	1	2	2	-	

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

EI1865	INSTRUMENTATION IN PETROCHEMICAL INDUSTRIES	L	Т	Р	C
		3	0	0	3

COURSE OBJECTIVES

- **1.** To introduce the students the method of oil recovery and the steps involved in oil gas production process
- **2.** To make the students understand the process behavior of some of the important unit operations in petrochemical industry through mathematical model
- **3.** To familiarize the students to apply knowledge to select the appropriate control strategy for the selective process.
- 4. To provide information about the most important derivatives obtained from petroleum products
- **5.** To help the students in understanding selection and maintenance of instruments in petrochemical industry.

|--|

OIL EXTRACTION AND OIL GAS PRODUCTION

9

9

Techniques used for oil discovery – Oil recovery methods – oil rig system - Overview of oil gas production – oil gas separation – Gas treatment and compression – Control and safety systems.

UNIT II	IMPORTANT UNIT OPERATIONS IN REFINERY	
Petroleum-chemic	al composition, petroleum conversion process- Distillation Column – Thermal crac	cl

Petroleum-chemical composition, petroleum conversion process- Distillation Column – Thermal cracking – Catalytic Cracking – Catalytic reforming – mathematical Modeling and selection of appropriate control strategy – Alkylation – Isomerization

UNIT III	DERIVATIVES FROM PETROLEUM	9
Derivatives from	methane - Methanol Production - Acetylene production - Derivatives from	
acetylene —Deriv	vatives from ethylene – Derivatives from propylene	

UNIT IV IMPORTANT PETROLEUM PRODUCTS & MEASUREMENTS

BTX from Reformate – Styrene – Ethylene oxide/Ethylene glycol – polyethylene – Polypropylene – PVC production. Parameters to be measured in refinery and petrochemical industry – Selection and maintenance of measuring instruments

T	INI	ГТ	V

SAFETY IN INSTRUMENTATION SYSTEMS

TOTAL :45 PERIODS

9

9

Hazardous zone classification – Electrical and Intrinsic safety – Explosion suppression and Deluge systems – Flame, fire and smoke detectors – leak detectors – Guidelines and standards – General SIS Design Configurations – Hazard and Risk Assessment – Failure modes – Operation and Maintenance

COURSE OUTCOMES

At the end of the course, the student should have the:

CO1	Gain knowledge on oil gas production process and important unit operations in a refinery
CO2	Having gained the process knowledge, ability to develop and analyze mathematical model of selective processes
CO3	. Able to develop, analyze and select appropriate control strategy for selective unit operations in a refinery
CO4	Gain knowledge on the most important chemical derivatives obtained from petroleum products
CO5	Understand safety instrumentation followed in process industries.

TEXT BOOKS

- 1. Waddams, A.L., "Chemicals from Petroleum", Wiley, 1973. (digitized in 2007)
- 2. Balchen, J.G., and Mumme K.I., "Process Control Structures and Applications", Von Nostrand Reinhold Company, New York, 1988

REFERENCES

- 1. Liptak, B.G., "Instrumentation in Process Industries", Chilton Book Company, 2005. (Digitized in 2008.)
- 2. Austin, G.T. and Shreeves, A.G.T., "Chemical Process industries", McGraw-Hill, 2012
- **3.** .HavardDevold, "Oil and Gas Production Handbook", ABB, 2006.
- 4. Paul Gruhn and Harry Cheddie, "Safety Instrumented Systems: Design, Analysis, and

Justification", 2nd Edition, ISA Press, 2006.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes		Program Outcomes													Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-			
CO2	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-			
CO3	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-			
CO4	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-			
CO5	2	2	1	-	2	-	-	-	-	-	-	-	2	2	-			

OPEN ELECTIVE -I (VI SEMESTER)

OCS103	INTRODUCTION TO CLOUD COMPUTING	L	Τ	Р	C				
		3	0	0	3				
OBJECTIVES	5		•		•				
• To und	erstand the concept of cloud computing.								
	n about the concept of cloud and utility computing.								
	e knowledge on the various issues in cloud computing.								
• To appr	reciate the emergence of cloud as the next generation computing paradig	gm.							
UNIT I INTRODUCTION									
Introduction to	Cloud Computing- Definition of Cloud- Evolution of Cloud Computi	ng-]	Root	S					
of Cloud Com	puting- Desired Features of Cloud Computing Benefits and Disadva	antag	ges o	f C	CO1				
Cloud Comput	ing- On-demand provisioning.								
					_				
UNIT II	VIRTUALIZATION				9				
Introduction to	Virtualization Technology- Service Oriented Architecture- Web Service	ces-	Load	ł					
Balancing and	l Virtualization- Hypervisor- Seven Layers of Virtualization -	Тур	es o	f C	CO2				
Virtualization -	- Server, Desktop, and Application Virtualization.								
UNIT III	CLOUD ARCHITECTURE, SERVICES AND STORAGE				9				
NIST Cloud C	omputing Reference Architecture- Public, Private and Hybrid Clouds	s – 1	aaS -	-					
PaaS - SaaS- Architectural Design Challenges- Cloud Storage - Storage-as-a-Service -S3-									
AdvantageofCl	oudStorage,MongoDB.								

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

Inter Cloud Resource Management-- Resource Provisioning Methods- Security Overview-Cloud Security Challenges-Data Security-Application Security-Virtual Machine Security.

UNIT V CLOUD ADVANCEMENT TECHNOLOGIES

Google App Engine(GAE) – GAE Architecture – Functional Modules of GAE- Dockers- AWS-Kubernetes-Pods-Container-container-Hadoop – Map Reduce – Oracle Virtual box-Cloud Software Environments- – Eucalyptus – Open Nebula.

TEXT BOOKS

TOTAL : 45 PERIODS

9

9

CO

4

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi, —Mastering Cloud Computing, Tata Mcgraw Hill, 2013.
- 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017

REFERENCE BOOKS

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach, Tata Mcgraw Hill, 2009.
- 2. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice), O'Reilly, 2009.
- 3. https://kubernetes.io/docs/home/
- $4. \ https://docs.mongodb.com/$
- 5. https://aws.amazon.com/documentdb/

COURSE OUTCOMES(CO)

CO1	Articula	ate th	ne ma	ain co	ncept	s, key	/ tech	nolog	ies, st	rengtl	ns and	l limi	tations	of clou	ıd comp	outing.	
CO2	Learn the key and enabling technologies that help in the development of cloud.																
CO3	Develo	Develop the ability to understand and use the architecture of compute and storage cloud, service															
	and delivery models.																
CO4	Explain the core issues of cloud computing such as resource management and security.																
CO5	Be able to install and use current cloud technologies and Choose the appropriate technologies																
	and approaches for implementation and use of cloud.																
	MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES																
														•			-
	ourse					Pr	oran	n Autoomos						Program Specific			
	tcomes	Program Outcomes									Outcomes						
Out	comes	a	b	С	d	e	f	g	h	i	j	k	L	1	2	3	
0	CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
0	CO2	3 3 3 2 - - - 2 2 1 2 2															

CO3	3	3	3	3	2	_	_	_	_	2	2	2	1	2	2	
CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
C05	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	

005104	DATADASE MANACEMENT SYSTEMS	, T					
OCS104	DATABASE MANAGEMENT SYSTEMS L 1 3 0						
Objectives		(<u> </u>				
	ne fundamentals of data models						
	onceptual modeling using ER diagrams.						
	SQL queries and database programming						
-	roper designing of relational database.						
-	tand database security concepts						
	tand Information retrieval techniques						
	*						
UNIT - I	DBMS AND CONCEPTUALDATAMODELING		9				
1	tabase System – Data independence - Data Models – Database System Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction						
	ases – Relational Model – Keys – ER-to-Relational Mapping. Modeling of		CO1				
library management system.							
UNIT - II	DATABASE QUERYING		9				
Relational Algebra – SQL: fundamentals – DDL – Specifying integrity constraints - DML – Basic retrieval queries in SQL - Complex SQL retrieval queries – nested queries – correlated queries – joins aggregate functions. Creating a table, populating data, adding integrity							
constraints, quer	ying tables with simple and complex queries.						
UNIT – III	DATABASE PROGRAMMING		9				
	mming with function calls, stored procedures - views – triggers. Embedde	ed					
	onnectivity with front end tools. Implementation using ODBC/JDBC and		CO				
SQL/PSM, implementing functions, views, and triggers in MySQL / Oracle							
UNIT – IV	DATABASE DESIGN	<u> </u>	9				
Functional Dep	endencies - Design guidelines - Normal Forms: first, second, third	-					

Functional Dependencies – Design guidelines – Normal Forms: first, second, third – Boyce/Codd Normal Form – Normalization algorithms. Design of a banking database system / university database system.

UNIT – V ADVANCED TOPICS

Database security issues – Discretionary access control – role based access – Encryption and public key infrastructures – challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

Total Periods: 45

9

Text Books:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson, 2011.
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill,2011

Reference Books:

- 1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. Raghu Ramakrishnan, —Database Management Systems, Fourth Edition, McGraw-Hill College Publications, 2015.

Course Outcomes (CO)

CO1	Ability to understand relational data model, evolve conceptual model of a given problem.
CO2	Understand query the relational database and write programs with database connectivity
CO3	Ability to understand the DBMS programming
CO4	Ability to understand the DBMS Design
CO5	Ability to understand the database security and information retrieval concepts

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outo	omes					Program Specific Outcomes			
	a	b	c	d	e	F	G	h	i	J	k	L	1	2	3	
CO1	3	3	3	1	1	1	1	1	3	3	1	1	3	2	2	
CO2	3	3	3	1	1	1	1	1	3	3	1	1	3	3	2	
CO3	3	3	3	1	1	1	1	2	3	3	1	1	3	3	2	
CO4	3	3	3	1	1	2	1	2	3	3	1	1	3	3	2	
CO5	3	3	3	1	1	1	1	2	3	3	1	1	3	2	2	

OME106

TESTING OF MATERIALS

 T
 P
 C

 0
 0
 3

L

3

Objectives

- To study the various material testing methods and standards.
- To study the various mechanical testing and material characterization
- To study the various destructive and non-destructive testing methods of materials and its industrial applications.

UNIT - I	INTRODUCTION TO MATERIALS TESTING	(
	rials: Classification of material testing, Purpose of testing, Selection of	
-	ent of testing, Testing organizations and its committee, Testing standards,	CO
Result Analysis, Ad	vantages of testing.	
UNIT - II	MECHANICAL TESTING	
	chanical testing: Hardness test (Vickers, Brinell, Rockwell), Tensile test,	
Impact test (Izod, Applications. Bend	Charpy) - Principles, Techniques, Methods, Advantages and Limitations, test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, nitations, Applications.	CO2
UNIT - III	NON DESTRUCTIVE TESTING	
	Liquid penetrant test, Magnetic particle test, Thermography test – Principles,	
-	tages and Limitations, Applications. Radiographic test, Eddy current test,	~ ~ ~
-	Acoustic emission- Principles, Techniques, Methods, Advantages and	CO3
Limitations, Applica		
UNIT - IV	MATERIAL CHARACTERIZATION TESTING	
-	licroscopic observations, Optical and Electron microscopy (SEM and TEM) -	
1 1	Advantages and Limitations, Applications. Diffraction techniques, niques, Electrical and Magnetic Techniques- Principles, Types, Advantages	CO
and Limitations, Ap		
and Emintations, rep		
UNIT - V	OTHER TESTING	
0	Differential scanning calorimetry, Differential thermal analysis. Thermo-	
	namic mechanical analysis: Principles, Advantages, Applications. Chemical	CO
e	uorescence, Elemental Analysis by Inductively Coupled Plasma-Optical	co.
Emission Spectros	opy and Plasma-Mass Spectrometry.	47
	Total Periods:	45
Text Books:		
1. Baldev Raj, T	Jayakumar, M.Thavasimuthu, "Practical Non-Destructive Testing", 3rd and	d late
	a Publishing House, 2014.	
2. Cullity, B. D.,	"Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc.	., Nev
York, 2005.		
	"The Mechanical Testing of Metals and Alloys", 7 th Edition, Cousens Press, 2	007.
4. Suryanarayana	A. V. K., "Testing of metallic materials", 2 nd Edition, BS publications, 2018	
Reference Books:		
	x: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, Am	nerica
Society for Meta	ıls, 1978.	
2. ASM Metals Ha	andbook, "Non-Destructive Evaluation and Quality Control", American Soci	iety o
Metals, Metals F	Park Ohio USA	
3. Brandon D.G., Publishing, 1998	"Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA,	1986

Course Ou	Course Outcomes (CO): At the end of the course students will have the,										
CO1	Ability to Identify various materials, different types of material testing, material testing standards and organizations, characterization and techniques										
CO2	Ability to Identify various mechanical testing and its procedure with application for industrial use.										
CO3	Ability to understand the various non-destructive testing techniques with application for industrial use.										
CO4	Ability to analyze the surface and elemental behavior of various materials using different material characterization techniques.										
CO5	Ability to understand the thermal and chemical behavior of various materials by special testing techniques.										

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course					Prog	gram	Outco	omes					Program Specific Outcomes			
Outcomes	a	b	c	d	e	f	g	h	i	j	k	L	1		3	
CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	
C05	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2	

OBT104	BIOSENSORS	L	Τ	Р	С
		3	0	0	3
OBJECTIVE					
 Underst 	tand protein based biosensors and their enzyme reactivity, stability and their	r app	olica	tion	
UNIT I	PROTEIN BASED BIOSENSORS				9

Nano structure for enzyme stabilization - Single enzyme nano particles - Nanotubes microporus	CO1
silica - Protein based nanocrystalline Diamond thin film for processing	

UNIT II DNA BASED BIOSENSOR

Heavy metal complexing with DNA and its determination water and food samples - DNA zymo biosensors

9

UNIT III	ELECTRO CHEMICAL APPLICATION	9	
----------	------------------------------	---	--

Detection in biosensors - Flurorescence - Absorption - Electrochemical. Integration of various CO3 techniques - Fibre optic biosensors

UNIT IV

FABRICATION OF BIOSENSORS

Techniques used for microfabrication - Microfabrication of electrodes - On chip analysis

UNIT V BIOSENSORS IN RESEARCH

Future direction in biosensor research - Designed protein pores-as components of biosensors - **CO5** Molecular design -Bionanotechnology for cellular biosensing - Biosensors for drug discovery -Nanoscale biosensors

TOTAL : 45 PERIODS

9

9

CO4

TEXT BOOKS

REFERENCE BOOKS

- 1. Biosensors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2004
- 2. Nanomaterials for Biosensors, Cs. Kumar, Willey VCH, 2007
- 3. Smart Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	The students will able to understand protein based biosensors and their enzyme reactivity, stability and their application in protein based nano crystalline thin film processing
CO2	The students will able to describe DNA based biosensors to study the presence of heavy metals in the food products
CO3	The students will able to understand fluorescence, UV-Vis and electrochemical applications of biosensors
CO4	The students will able to study about the fabrication of biosensors and its application as nanochipanalyzer
CO5	To understand the Future direction in biosensor research

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course		Program
Course Outcomes	Program Outcomes	Specific
		Outcomes

	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	1
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	2
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	2
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	2
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	2

OEE107

SOLAR AND WIND ENERGY SYSTEMS

L T P C 3 0 0 3

9

9

9

9

OBJECTIVES

- To understand types and applications of various form of energy sources and its environmental impacts
- To attain a broad comprehension of solar photovoltaic systems used for various applications.
- To understand and estimate performance of wind turbine

UNIT - I

INTRODUCTION OF SOLAR ENERGY

Solar radiation at the earth's surface - solar radiation measurements - estimation of average solar radiation - solar thermal flat plate collectors - concentrating collectors - solar thermal applications - heating, cooling, desalination, drying, cooking, etc - solar thermal electric power plant - principle of photovoltaic conversion of solar energy, types of solar cells

UNIT - II

I SOLAR PHOTOVOLTAIC TECHNOLOGY

Photovoltaic basics - structure and working of solar cells - types, electrical properties and behaviour of solar cells - cell properties and design, stand alone PV systems - schematics, components, batteries, charge conditioners, grid connected PV systems - schematics, components , charge conditioners, interface components, hybrid systems - solar, biomass, wind, diesel hybrid systems, design of PV systems - radiation and load data, simple case studies.

UNIT - III PHOTOVOLTAIC APPLICATIONS

Battery charger, domestic lighting, street lighting, water pumping etc - Solar PV power plant -Net metering concept. National / International PV Power Programmes - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems -Grid-Connected Systems - Concentrating Photovoltaics (CPV) - Electrical Performance. Applications of IoT and Machine learning for SPV applications.

UNIT - IV WIND ENERGY

Nature of the wind - power in the wind - factors influencing wind - wind data and energy estimation - wind speed monitoring - wind resource assessment - Betz limit - site selection - CO4 wind energy conversion devices - classification, characteristics, applications - offshore wind

energy - Hybrid systems - safety and environmental aspects - wind energy potential and installation in India - Repowering concept.

UNIT - VAERODYNAMICS AND PERFORMANCE OF WIND TURBINE9Horizontal Axis Wind Turbine (HAWT) & Vertical Axis Wind Turbine (VAWT), Power
Developed, Maximum power coefficient (Betz Limit), Thrust, Efficiency, Rotor
selectionRotor design considerations, Diameter of the Rotor. Aerodynamic design principles,
Blade Profile, Blade Element Theory, Choice of the number of blades, Choice of the Pitch
angle, Tip speed ratio, Power speed characteristics, Torque speed characteristics, Solidity.CO5

TOTAL PERIODS:45

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand the basics of solar energy and its measurements applications

- CO2 Understand the fundamentals of solar photovoltaic technology and design different SPV systems
- CO3 Understand the application of solar photovoltaic technologies
- CO4 Understand the wind resource assessment and conversion systems
- CO5 | Analyse wind turbine performance with regard to aerodynamics

TEXT BOOKS:

- 1. Sukhatme, S.P., Solar Energy, Tata McGraw Hill, 1984
- 2. Twidell& Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011 G.D., "Non-Conventional Energy Sources",

REFERENCE BOOKS:

- 1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publishers, 2011
- 2. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2011
- 3. Ramesh R & Kumar K.U, "Renewable Energy Technologies", Narosa Publishing House, 2010
- 4. Mittal K M, "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2010
- 5. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010.

Course Outcomes					Pro	gram	Outc	omes					-	ram Sp Dutcom	
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2

CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
C05	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2

OME104	INDUSTRIAL SAFETY ENGINEERING L	Т	Р	C
	3	0	0	3
♦ OBJE	CTIVES:			
•	impart knowledge on safety engineering fundamentals and safety n	nana	gem	ien
practices.			C	
UNIT I	INTRODUCTION			9
Evolution of	modern safety concepts – Fire prevention – Mechanical hazards – Boi	lers.		
	els, Electrical Exposure.	,	C	01
UNIT II	CHEMICAL HAZARDS			9
-	posure – Toxic materials – Ionizing Radiation and Non-ionizing Radiati giene – Industrial Toxicology. ENVIRONMENTAL CONTROL	<u> </u>	C	:02
				-
	alth Hazards – Environmental Control – Industrial Noise - Noise measu Control of Noise, Vibration, - Personal Protection.	ring	C	: 0 .
UNIT IV	HAZARD ANALYSIS			9
-	y Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes vsis (FMEA), HAZOP analysis and Risk Assessment	and	C	2 0 4
UNIT V	SAFETY REGULATIONS			
-	Disaster management – catastrophe control, hazard control ,Safety educa Factories Act, Safety regulations Product safety – case studies.	tion	C	: O :
	TOTAL : 45	PE	RIO	D

TEXT BOOKS

REFERENCE BOOKS

1. Safety Manual, "EDEL Engineering Consultancy", 2000.

2. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	understand the basic safety concepts in Industrial boilers, pressure vessels
	understand the hazardous effects caused and prevention methods of chemicals used in
CO2	industry
CO3	understand the environmental measures and controls towards safety
CO4	understand the analysis of safety preventions and hazards in industry
CO5	understand the safety regulations and safety management.

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes	Program Outcomes Program Spectrum Outcomes Outcomes									-					
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2
C05	3	3	3	3	2	-	-	-	-	2	2	2	1	2	2

OCE101	AIR POLLUTION AND CONTROL	L	Т	Р	С
	(COMMON TO BIOTECH, EEE, EIE, MECH)	3	0	0	3

Objectives

- To impart knowledge on the principle and design of particulate/ gaseous air pollutant and its emerging trends.
- To acquaint the students with the basics of selection of control equipment.
- To learn about indoor air quality control.

UNIT - I AIR QULALITY MONITORING

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards –Composition of Particulate and Gaseous Pollutants.

UNIT - II EFFECT OF ATMOSPHERIC DISPERSION

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

UNIT - III PARTICULATE CONTAMINANTS

Gas Particle Interaction – Working principle, Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators – Operational Considerations-Factors affecting Selection of Control Equipment.

UNIT - IV GASEOUS CONTAMINANTS

Working principle, Adsorption, condensation, Incineration, Bio scrubbers, Bio filters – Process control and Monitoring – Operational Considerations- Factors affecting Selection of Control Equipment –CO2 capturing.

UNIT - V INDOOR AIR QUALITY MONITORING

Sources, types and control of indoor air pollutants, sick building syndrome types –Sources and Effects of Noise Pollution– Standards–Control and Preventive measures.

Total Periods: 45

9

CO1

9

9

9

9

Text Books:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

Reference Books:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.

3.	Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
Course	e Outcomes (CO) : The students completing the course will have
CO1	Understand the chemistry of atmosphere, characterize the air pollutants, know the effects of
	air pollution, identify the criteria air pollutants and know about NAAQS

CO2	Apply the knowledg	e of mathematics	and science fundamentals to un	iderstand the concept of
	meteorology, air pol	lution dispersion	and Gaussian plume dispersion	model

CO3 Select suitable method and design the particulate pollutant control equipment

CO4 Select appropriate method for control of gaseous pollutant by due consideration of sources of emission

CO5 Understand the source of indoor air pollution, effects and control methods as well as to identify the source of noise, and select suitable method for control of noise pollution

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course					Prog	gram	Outc	omes					-	gram S Dutcon	pecific nes
Outcomes	a	b	c	d	e	f	g	h	Ι	j	k	l	1	2	3
CO1	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO2	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO3	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO4	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO5	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2

OPEN ELECTIVE -II (VII SEMESTER)

OCS105	DATA ANALYTICS WITH R PROGRAMMING	L	Т	P	С
		3	0	0	3
OBJECTIVES	5				
Student	s will learn R. Programming language, data analytics, data visualization a	and	stati	stica	al
model f	or data analytics				
By com	pletion of this course, students will be able to become data analyst				
UNIT I	INTRODUCTION TO DATA ANALYSIS				9
Overview of D	ata Analytics, Need of Data Analytics, Nature of Data, Classification of	Da	ta:		
Structured, Ser	ni-Structured, Unstructured, Characteristics of Data, Applications of	Da	ita	CC)1
Analytics					

	9
Overview of R programming, Environment setup with R Studio, R Commands, Variables and	CO
Data Types, Control Structures, Array, Matrix, Vectors, Factors, Functions, R packages	CO2
UNIT III DATA VISUALIZATION USING R	9
Reading and getting data into R (External Data): Using CSV files, XML files, Web Data,	CO
JSON files, Databases, Excel files.	
Working with R Charts and Graphs: Histograms, Boxplots, Bar Charts, Line Graphs,	
Scatterplots, Pie Charts	
UNIT IV STATISTICS WITH R	9
Random Forest, Decision Tree, Normal and Binomial distributions, Time Series Analysis,	CO ²
Linear and Multiple Regression, Logistic Regression	
UNIT V PRESCRIPTIVE ANALYTICS	9
Creating data for analytics through designed experiments, Creating data for analytics through	CO
active learning, Creating data for analytics through reinforcement learning	
TOTAL : 45 PEI	RIOD
TEXT BOOKS	
1. An Introduction to R, Notes on R: A Programming Environment for Data Analyst	sis an
Graphics. W. N. Venables, D.M. Smith and the R Development Core Team.	
URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf	
REFERENCE BOOKS	
1. Jared P Lander, R for everyone: advanced analytics and graphics, Pearson Education	n, 201
Dunlop, Dorothy D., and Ajit C. Tamhane. Statistics and data analysis: from element	ntary t
intermediate. Prentice Hall, 2000.	
2. G Casella and R.L. Berger, Statistical Inference, Thomson Learning 2002.	
3. P. Dalgaard. Introductory Statistics with R, 2nd Edition. (Springer 2008)	
4. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer	
5. Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: st	oringe
5. Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: sp 2009.	oringe
2009.	_
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil 	_
2009.6. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010	lity fo
 2009. 6. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 7. Joseph F Hair, William C Black etal , "Multivariate Data Analysis", Pearson Education 	lity fo
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis", Pearson Educati edition, 2013. 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 COURSE OUTCOMES Upon completion of the course, students will be able to 	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Understand the basics of data analytics	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Understand the basics of data analytics CO2 Understand and apply the R-Programming concepts	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Understand the basics of data analytics CO2 Understand and apply the R-Programming concepts CO3 Apply R-Programming for data visualization	lity fo on, 7t
 2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probabil Engineers. John Wiley &Sons, 2010 Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Educati edition, 2013. Mark Gardener, "Beginning R - The Statistical Programming Language", John Wiley & Inc., 2012. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013 COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Understand the basics of data analytics CO2 Understand and apply the R-Programming concepts	lity fo on, 7t

Course Outcomes			Program Specific Outcomes												
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	1	2

OME102	DESIGN OF EXPERIMENTS	L	Τ	Р	C
		3	0	0	3
Objectives					
• To demo	onstrate knowledge and understanding of Classical Design of Experime	ents	(DO	E).	
To demo	onstrate knowledge and understanding of Taguchi's approach.				
• To devel	op skills to design and conduct experiments using DOE and Taguchi's	s app	oroac	h.	
• To deve	lop competency for analysing the data to determine the optimal pro	cess	par	ame	ter
that optim	mize the process.				
UNIT - I	FUNDAMENTALS OF EXPERIMENTAL DESIGNS				9
Hypothesis test	ing - single mean, two means, dependant/ correlated samples - co	onfid	lence	;	
intervals, Exper	imentation - need, Conventional test strategies, Analysis of variance	e, F	-test	,	
	sic principles of design, steps in experimentation - choice of samp				CO
	f normal probability plot – simple linear and multiple linear regression	n, te	sting	5	
using Analysis of					
UNIT - II	SINGLE FACTOR EXPERIMENTS				9
- ·	domized Design- effect of coding the observations- model adequacy of		-		
	nodel parameters, residuals analysis- treatment comparison methods- I				
1 0	test, Newman- Keuel's test, Fisher's LSD test, Tukey's test- testin	<u> </u>	-		CO
	omized Block Design – Latin Square Design- Graeco Latin Square I	Desi	gn -	-	
Applications.					.
UNIT - III	FACTORIAL DESIGNS				
	action effects - Two and three factor full factorial designs- Fixed eff				
	model - Rule for sum of squares and Expected Mean Squares- 2K Des				CO
	factors- Yate's Algorithm- fitting regression model- Randomize	ed E	Block		
	- Practical applications.				
UNIT - IV	SPECIAL EXPERIMENTAL DESIGNS				9
	onfounding in 2 ^K Designs- blocking in replicated design- 2 ^K Factoria	1 5	•	,	CO

	V	r
	blocks- Complete and partial confounding- Confounding 2 ^K Design in four blocks- Two	
	Fractional Factorial Designs- one-half fraction of 2^{K} Design, design resolution,	
	iction of one-half fraction with highest design resolution, one-quarter fraction of 2^{K}	
*	introduction to response surface methods, central composite design.	
UNIT -		9
-	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments-	
Respon	se Graph Method, ANOVA- attribute data analysis- Robust design- noise factors,	CO5
Signal t	o noise ratios, Inner/outer OA design- case studies.	
	Total Periods:	45
Text B	ooks:	
1.	Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 20	12.
Refere	nce Books:	
1.	Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., "Statistics for Experimenters: D	esign,
	Innovation, and Discovery", 2nd Edition, Wiley, 2005.	-
2.	Krishnaiah K, and Shahabudeen P, "Applied Design of Experiments and Taguchi Met	hods",
	PHI, India, 2011.	
3.	Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill,	India,
	2005.	
Course	Outcomes (CO)	
Upon c	ompletion of course, the students will be able to	
CO1	understand the basic principle of DOEs and ANOVA.	
CO2	understand the various single factor experiments	
CO3	learn full and fraction factorial experiment design.	
CO4	Ability to design various resolution using 2^k .	
CO5	understand the Taguchi Orthogonal Arrays.	

Course Outcomes	mes														pecific les
Outcomes	a	b	С	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	1	2	2	2	1	2	1	1	1	1	3	2	1	1
CO2	3	2	2	1	2	1	2	1	1	1	2	3	2	1	1
CO3	3	2	1	2	2	1	2	1	1	1	2	3	2	1	1
CO4	3	1	2	2	2	1	2	1	1	1	1	3	2	1	1

CO5	3	2	2	2	2	1	2	1	1	1	1	3	2	1	1]
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

OME105	PRODUCT DESIGN AND DEVELOPMENT LT	P	(
OBJECTIVI	3 0	0	3
 The constraints archites and how Basic Basic 	burse aims at providing the basic concepts of product design, product features becture so that student can have a basic knowledge in the common features a prod bow to incorporate them suitably in product. idea about the planning in product design. idea about the industrial design tools. idea about patents.		
UNIT I	INTRODUCTION		9
designer, ma analysis. Und development	 D – Strategic importance of Product development – integration of customer, terial supplier and process planner, Competitor and customer – Behaviour erstanding customer – prompting customer understanding – involve customer in and managing requirements – Organization – process management and – Plan and establish product specifications. 	C	D1
UNIT II	CONCEPT GENERATION AND SELECTION		9
	ured approaches – clarification – search – externally and internally – explore – reflect on the solutions and processes – concept selection – methodology –	C	52
UNIT III	PRODUCT ARCHITECTURE		9
-manufactura creation -clu interactions -	- Product change – variety – component standardization – product performance bility – product development management – establishing the architecture – istering – geometric layout development – fundamental and incidental related system level design issues – secondary systems – architecture of the ting detailed interface	C	03
UNIT IV	INDUSTRIAL DESIGN		9
tools –Simula for industrial impact – desi	ess design – Managing costs – Robust design – Integrating CAE, CAD, CAM ting product performance and manufacturing processes electronically – Need design – impact – design process – investigation of for industrial design – gn process – investigation of customer needs – conceptualization – refinement t of the industrial design process – technology driven products – user – driven	СС)4

products - assessing the quality of

industrial design.

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs –Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes –Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL : 45 PERIODS

9

TEXT BOOKS

1. Kari T.Ulrich and Steven D.Eppinger, "Product Design and Development", McGraw-Hill International Edns. 1999.

REFERENCE BOOKS

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.
- 3. Staurt Pugh, "Tool Design –Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, New York, NY.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Design some products for the given set of applications and also the knowledge gained
	through prototyping technology will help the student to make a prototype of a problem and
	hence product design and development can be achieved.
CO2	Understand the concepts in generation and selection criteria.
CO3	Carry out pipeline execution and in establishing the architecture for developing products.
CO4	Acquire knowledge on investigation for customer needs related to industrialisation.
CO5	Develop and execute the developed prototypes.

Course Outcomes					Pro	gram	n Outo	comes	5					ram Sp Dutcom	
Outcomes	a	b	С	d	e	f	g	h	i	j	k	L	1	2	3
CO1	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO2	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO3	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
CO4	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2

		C05	2	1	3	1	2	2	2	1	1	1	1	2	2	3	2
--	--	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

OME107	VIBRATION AND NOISE CONTROL L	Τ	Р	C
	3	0	0	3
Objectives				
•	e basics, sources and its control techniques of vibration			
· ·	e basics, sources and its control techniques of noise			
	e sources of vibration and noise in automobiles			
To reduce vi	ibration and noise in automotive components			
UNIT - I	BASICS OF VIBRATION			ļ
Introduction, o	classification of vibration: free and forced vibration, undamped and dar	nped		
	ar and non-linear vibration, response of damped and undamped systems u			CC
harmonic forc	e, analysis of single degree and two degree of freedom systems, tors	ional	. `	
vibration, dete	rmination of natural frequencies.			
				1
UNIT - II	BASICS OF NOISE			
	amplitude, frequency, wavelength and sound pressure level, addi			
	nd averaging decibel levels, noise dose level, legislation, measurement noise, measurement environment, equipment, frequency analysis, trac			C
-	d quality analysis.	лпg		
analysis, sound	a quanty analysis.			
U NIT - III	AUTOMOTIVE NOISE SOURCES			
		oise,		
Noise Characte	AUTOMOTIVE NOISE SOURCES eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er			
Noise Characte assessment of	eristics of engines, engine overall noise levels, assessment of combustion n	ngine		
Noise Characte assessment of necessary cont	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois	ngine		
Noise Charactor assessment of necessary cont	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, en tributed noise, transmission noise, aerodynamic noise, tire noise, brake noise CONTROL TECHNIQUES	ngine se.		
Noise Character assessment of necessary cont UNIT – IV Vibration iso	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er tributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm	ngine se. ents,		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp	ngine se. ents,		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er tributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm	ngine se. ents,		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers.	ngine se. ents,		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL	ents,		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for o	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers.	ents, ping, tive		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for conalysis, pallia	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic	ents, ping, tive		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for conalysis, pallia	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic tive treatments and enclosures, automotive noise control principles, sound nd energy absorption, sound transmission through barriers	ents, ping, tive d in		
Noise Character assessment of necessary control UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for of analysis, pallia enclosures, sou	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake noise CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft dampers s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predictive treatments and enclosures, automotive noise control principles, sound	ents, ping, tive d in		
Noise Character assessment of necessary cont UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for of analysis, pallia enclosures, sou	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er rributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic tive treatments and enclosures, automotive noise control principles, sound nd energy absorption, sound transmission through barriers Total Peric	ents, ping, tive d in		
Noise Character assessment of necessary control UNIT – IV Vibration iso application dy modal analysis UNIT – V Methods for of unalysis, pallia enclosures, sou Text Books: 1. Singires	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic tive treatments and enclosures, automotive noise control principles, sound nd energy absorption, sound transmission through barriers Total Perio su S.Rao, "Mechanical Vibrations", 5 th Edition, Pearson Education, 2010.	ents, ping, tive d in ods:		
Noise Character assessment of necessary control UNIT – IV Vibration isol application dy modal analysis UNIT – V Methods for of analysis, pallia enclosures, sou Fext Books: 1. Singires 2. David E	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic tive treatments and enclosures, automotive noise control principles, sound nd energy absorption, sound transmission through barriers Total Perio su S.Rao, "Mechanical Vibrations", 5 th Edition, Pearson Education, 2010. Bies and Colin Hansen, "Engineering Noise Control – Theory and Practice"	ents, ping, tive d in ods:		
Noise Character assessment of necessary control UNIT – IV Vibration isol application dy modal analysis UNIT – V Methods for of analysis, pallia enclosures, sou Fext Books: 1. Singires 2. David E	eristics of engines, engine overall noise levels, assessment of combustion n mechanical noise, engine radiated noise, intake and exhaust noise, er ributed noise, transmission noise, aerodynamic noise, tire noise, brake nois CONTROL TECHNIQUES lation, tuned absorbers, un-tuned viscous dampers, damping treatm namic forces generated by IC engines, engine isolation, crank shaft damp s of the mass elastic model shock absorbers. SOURCE OF NOISE AND CONTROL control of engine noise, combustion noise, mechanical noise, predic tive treatments and enclosures, automotive noise control principles, sound nd energy absorption, sound transmission through barriers Total Perio su S.Rao, "Mechanical Vibrations", 5 th Edition, Pearson Education, 2010.	ents, ping, tive d in ods:		

Reference Books:

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University,2007.
- 2. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th Edition Pearson Education,2011.
- 3. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996.
- 4. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 5. Julian Happian-Smith , "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004.
- 6. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010.
- 7. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer, 2010.
- 8. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009.
- 9. John Fenton, "Handbook of Automotive body Construction and Design Analysis", Professional Engineering Publishing, 1998.

	Outcomes (CO) ompletion of the course, students will have the ability
CO1	To understand the basics, different types and source of vibration
CO2	To understand the basics, different types and source of noise
CO3	To understand and analyze the various sources of automotive noise
CO4	To understand the various control techniques of vibration
CO5	To understand the sources and control techniques of automotive noise

Course Outcomes					Pro	gram	Outc	omes					Program Specific Outcomes				
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3		
CO1	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2		
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3		
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	2	2		

CO4	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3
CO5	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3

OEC101	IN	RODUCTIO	ON TO SI	GNALS	AND \overline{S}	YSTE	AS	L	Т	Р	C
								3	0	0	3
Objectives											
• To under	stand the bas	ic properties (of signal a	nd syster	ns						
		of characteriz	-	-		e time d	omain				
• To analyz	e continuou	s-time signals	and system	m in the	Fourier	and Lap	lace do	main			
• To analyz	e discrete-ti	me signals and	d system i	n the Fou	rier and	Z trans	sform do	omain			
	CT A COT										-
UNIT - I	CLASSI	ICATION O	OF SIGNA	ALS ANL	O SYST	EM					1
Standard signal	s- Step, Ran	np, Pulse, Imp	oulse, Real	and con	plex ex	ponenti	als and	Sinuso	ids -	-	I
Classification of	f signals – (Continuous-tin	me (CT) an	nd Discre	te-time	(DT) si	gnals, P	eriodic	e and	l	
Aperiodic sign	als, Deterr	ninistic and	Random	signals,	Energ	y and	Power	signa	ls -	-	CO
Classification of	£					1 3 7 1		ima va	riant	ŀ	
	i systems- C	T systems an	d DT syste	ems- – L	inear an	d Nonl	inear, T	inne-va	iiuii	-	
and Time-invar	-	=	-			d Nonl	inear, T	iiiie-va	IIam		
	-	=	-			d Nonl	inear, T				
	iant, Causal	=	sal, Stable	e and Uns	table.		inear, T				1
and Time-invar	iant, Causal	and Non- cau SIS OF CON	sal, Stable	e and Uns	table.	ALS					1
and Time-invar UNIT - II Fourier series f	iant, Causal	and Non- cau SIS OF CON	sal, Stable	e and Uns	table.	ALS				1	
and Time-invar	iant, Causal	and Non- cau SIS OF CON	sal, Stable	e and Uns	table.	ALS				1	
and Time-invar UNIT - II Fourier series f	iant, Causal	and Non- cau SIS OF CON	sal, Stable	e and Uns	table.	ALS				1	
and Time-invar UNIT - II Fourier series f	ANALY	and Non- cau SIS OF CON	sal, Stable	e and Uns U S TIME form – pr	table.	ALS 5- Lapla	ace Trar	nsforms		1	CO
and Time-invar UNIT - II Fourier series f properties. UNIT - III	ANALY or periodic LINEAR	and Non- cau SIS OF CON signals - Four TIME INVA	sal, Stable	e and Uns US TIME form – pr	table.	ALS 5- Lapla TIME (ace Trar	nsform: MS	s and		CO
and Time-invar UNIT - II Fourier series f properties.	ANALY or periodic LINEAR nse - conv	and Non- cau SIS OF CON signals - Four TIME INVA	sal, Stable TINUOU rier Transf RIANT O grals- Diff	e and Uns U S TIME form – pr CONTIN ferential	table. SIGNA roperties UOUS Equation	ALS s- Lapla TIME on- Fo	ace Trar SYSTE urier an	nsform: MS	s and		CO
and Time-invar UNIT - II Fourier series f properties. UNIT - III Impulse respo	ANALY or periodic LINEAR nse - conv	and Non- cau SIS OF CON signals - Four TIME INVA	sal, Stable TINUOU rier Transf RIANT O grals- Diff	e and Uns U S TIME form – pr CONTIN ferential	table. SIGNA roperties UOUS Equation	ALS s- Lapla TIME on- Fo	ace Trar SYSTE urier an	nsform: MS	s and		CO
and Time-invar UNIT - II Fourier series f properties. UNIT - III Impulse respo	ANALY or periodic LINEAR nse - conv nalysis of C	and Non- cau SIS OF CON signals - Four TIME INVA	sal, Stable TINUOU rier Transf RIANT C grals- Diff ystems con	e and Uns	table. SIGNA roperties UOUS Equation series a	ALS s- Lapla TIME on- Fo	ace Trar SYSTE urier an	nsform: MS	s and		112 CO 112 CO

of DTFT - Z Transform and Properties.

UNIT - V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS 12 Impulse response – Difference equations-Convolution sum- Discrete-time Fourier Transform CO and Z Transform analysis of Recursive and Non-Recursive systems-DT systems connected in 5 series and parallel. **Total Periods: 60 Text Books:** 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2015. **Reference Books:** 1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009. 2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and Discrete", Pearson,2007. 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007. **Course Outcomes (CO)** CO1 To be able to determine if a given system is linear/causal/stable CO2 Capable of determining the frequency components present in a deterministic signal CO3 Capable of characterizing LTI systems in the time domain and frequency domain CO4 Understand the process of sampling and able to analyze the discrete-time signals in the frequency domain.

CO5 To be able to compute the output of an LTI system in the time and frequency domains.

Course					Pro	gram	Out	come	5					ram Sp Dutcom	
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	3	2	3	3	2	2	0	0	0	0	1	2	3	2	1
CO2	3	2	3	3	2	2	0	0	0	0	1	2	3	2	1

CO3	3	2	3	3	2	2	0	0	0	0	1	2	3	2	1	
CO4	3	2	3	3	2	2	0	0	0	0	1	2	2	2	1	
CO5	3	2	3	3	2	2	0	0	0	0	1	2	3	2	1	

OCH102	PROCESS MODELLING AND SIMULATION	L	Τ	Р	C
	(COMMON TO EEE & EIE)	3	0	0	3

Objectives

- To give an overview of various methods of process modeling, different computational techniques for simulation.
- To analyze the steady state lumped systems.
- To analyze the unsteady state lumped systems
- To analyze the steady state distributed systems
- To analyze the unsteady state distributed systems and various modeling approaches.

UNIT – I	INTRODUCTION	7
Introduction to r	nodeling and simulation, classification of mathematical models, conservation	001
equations and au	ixiliary relations.	CO1
UNIT – II	STEADY STATE LUMPED SYSTEMS	9
non- linear alge	om analysis, single and network of process units, systems yielding linear and ebraic equations, flow sheeting – sequential modular and equation oriented ag, partitioning and precedence ordering, solution of linear and non-linear ons.	CO2
UNIT – III	UNSTEADY STATE LUMPED SYSTEMS	9
	id level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash	
• •	column, solution of ODE initial value problems, matrix differential equations,	CO3
	osed loop systems.	
UNIT – IV	STEADY STATE DISTRIBUTED SYSTEM	7
Analysis of com	pressible flow, heat exchanger, packed columns, plug flow reactor, solution	COA
of ODE boundar	ry value problems.	CO4
UNIT – V	UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES	13
•	ar flow in pipe, sedimentation, boundary layer flow, conduction, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor.	CO5

Empirical modeling, parameter estimation, population balance and stochastic modeling.

Total Periods: 45

Text Books:

- 1. Ramirez, W.; "Computational Methods in Process Simulation ", 2nd Education., Butterworths Publishers, New York, 2000.
- 2. Luyben, W.L., "Process Modelling Simulation and Control ",2nd Education, McGraw-Hill Book Co., 1996

Reference Books:

- 1. Felder, R.M. and Rousseau, R.W., "Elementary Principles of Chemical Processes", John Wiley, Fourth edition 2018.
- 2. Franks, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 2014.
- 3. Amiya K. Jana, "Process Simulation and Control Using ASPEN", 2nd Education,PHI Learning Ltd (2012).
- 4. Amiya K. Jana, "ChemicalProcess Modelling and Computer Simulation" 2nd Education, PHI Learning Ltd, (2012).

Course	Outcomes (CO)
CO1	Student should have understood the development of process models based on conservation
	principles and process data and computational techniques to solve the process models.
CO2	Ability to analyze steady state lumped system
CO3	Ability to analyze unsteady state lumped system
CO4	Ability to analyze steady state distributed system
CO5	Ability to understand unsteady state distributed system and various modelling approaches

Course Outcomes					Prog	am (Jutco	mes					-	ram S Dutcon	pecific 1es
Outcomes	a	b	c	d	Ε	f	g	h	Ι	j	k	1	1	2	3
CO1	3	2	2	1	1	2	2	1	1	1	1	1	2	2	2
CO2	3	3	3	3	2	2	2	1	2	1	1	1	3	3	2
CO3	3	3	3	3	2	2	2	1	2	1	1	1	3	3	2

CO4	3	3	3	3	2	2	2	1	2	1	1	1	3	3	2	
CO5	3	3	3	3	2	2	2	1	2	1	1	1	3	3	2	

OMB101	TOTAL QUALITY MANAGEMENT	L	Т	Р	С
Electronics a	Mechanical Engineering, Instrumentation and Control Engineering, nd Instrumentation Engineering, Electronics and Communication , Computer Science Engineering, Information Technology, Civil	3	0	0	3
	Engineering)				
Objectives					
 To facilit 	ate the understanding of Quality Management principles and process.				
UNIT - I	INTRODUCTION				9
Introduction - N	eed for quality - Evolution of quality - Definitions of quality - Dime	ensio	ns of	f	
	via quality Dasis concents of TOM TOM Framework Contril				

product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention

UNIT - II TQM PRINCIPLES

Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT - III TQM TOOLS AND TECHNIQUES-I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking -Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT - IV TQM TOOLS AND TECHNIQUES-II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT - VQUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000- ISO 9001 Requirements—Implementation— Documentation—Internal Audits—Registration-Environmental Management System: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001— Benefits of EMS.

Total Periods: 45

9

9

9

9

Text Books:

1. Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield,Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised 3rd Edition, Indian Reprint, Sixth impression, 2013.

Reference Books:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Janaki Raman. B and Gopal.R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 4. ISO 9001-2015 standards

Course	e Outcomes (CO)
CO1	The students can understand the principles of quality management and to explain how these
	principles can be applied within quality management systems.
CO2	Students can identify the key aspects of the quality improvement cycle and to select and use appropriate tools and techniques for controlling, improving and measuring quality.
CO3	Students can understand the organisational, communication and teamwork requirements for
0.03	effective quality management
CO4	Critically analyse the strategic issues in quality management, including current issues and
04	developments, and to devise and evaluate quality implementation plans
CO5	The student would be able to apply the tools and techniques of quality management to
0.05	manufacturing and services processes.

Course Outcomes					Prog	gram	Outc	omes					-	ram S Outcor	pecific nes
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
C01	4	0	0	0	0	4	4	4	4	4	4	4	0	0	0
CO2	3	0	0	0	0	4	4	4	4	4	4	4	0	0	0
CO3	4	0	0	0	0	3	4	4	3	3	4	4	0	0	0
CO4	4	0	0	0	0	3	4	3	3	3	4	4	0	0	0
C05	4	0	0	0	0	4	3	4	4	4	4	4	0	0	0

AUDIT COURSE

AD1001	CONSTITUTION OF INDIA	L	Т	Р	C
		2	0	0	0
Objectives					
• Understand t	the premises informing the twin themes of liberty and freedom from	n a	civi	l rig	ghts

198

perspective.

- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional
- Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917and its impact on the initial drafting of the Indian Constitution.

UNIT – I HISTORY OF MAKING OF THE INDIAN CONSTITUTION

History, Drafting Committee, (Composition & Working)

UNIT – II PHILOSOPHY OF THE INDIAN CONSTITUTION

Preamble, Salient Features

UNIT – III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT – IV ORGANS OF GOVERNANCE

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT – V LOCAL ADMINISTRATION

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Panchayati raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT – VI ELECTION COMMISSION

Election Commission: Role and Functioning. Chief Election Commissioner and Election
Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.CO5

Total Periods:

5

5

5

5

5

5

30

CO1

CO2

Reference Books:

- 1. The Constitution of India,1950(Bare Act),Government Publication.
- 2. Dr.S.N.Busi, Dr.B. R.Ambedkar 'Framing of Indian Constitution',1stEdition, 2015.
- 3. M.P. Jain, Indian Constitution Law, 7thEdition, Lexis Nexis,2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015

Course	Outcomes (CO)
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
CO4	Discuss the passage of the Hindu Code Bill of 1956.
CO5	Discuss about the role and functioning of election commission.

Course Outcomes					Prog	gram	Outc	omes						gram Sj Dutcom	-
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1

AD1002	VALUE EDUCATION	L	Т	Р	С
		2	0	0	0
Objectives					
· Imbibe good va	ue of education and self-development lues in students s know about the importance of character				
UNIT – I					6
	development–Social values and individual attitudes. Work ethics in the second state of				01

UNIT ·	– II		6
Concer	ntration.	cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. e for nature, Discipline.	CO2
UNIT ·			6
Integrit anger, Happin	ty and c Dignity ness Vs	d Behavior Development-Soul and Scientific attitude. Positive Thinking. liscipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from of labour. Universal brother hood and religious tolerance. True friendship. suffering, love for truth. Aware of self-destructive habits. Association and oing best for saving nature.	CO3
UNIT ·			6
Science	e of rein	Competence–Holy books vs Blind faith. Self-management and good health. carnation. Equality, Nonviolence, Humility, Role of Women. All religions and Mind your Mind, Self-control. Honesty, Studying effectively.	CO4
		Total Periods:	30
Refere	ence Boo	ks:	
	akrobort ss, New	y, S.K.'Values and Ethics for organizations Theory and practice', Oxford Uni Delhi	versity
Course	e Outcor	mes (CO)	
CO1	Know	ledge of self-development	
CO2	Learn	the importance of Human values	
CO3	Devel	oping the overall personality.	
CO4	Devel	oping the competence and self-control	
	MA	APPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES	
Cou	urse	Program Outcomes Program Specific Outcomes	fic

Outcomes					Pro	gram	Outo	comes					C	Outcon	ies
Gutcomes	a	b	с	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1

AD1003	PEDAGOGY STUDIES L	Т	Р	С
	2	0	0	0
Objectives			<u> </u>	
· Making under	ng evidence on their view topic to inform programme design and policy taken by the DFID, other agencies and researchers. I evidence gaps to guide the development			
UNIT – I	INTRODUCTION AND METHODOLOGY		(6
learning, Currie	ale, Policy background, Conceptual framework and terminology - Theorie culum, Teacher education - Conceptual framework, Research questio ethodology and Searching.		C	01
UNIT – II	THEMATIC OVERVIEW		(6
	actices are being used by teachers in formal and informal classroom ntries – Curriculum, Teacher education.	is in	C	02
UNIT – III	EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES		•	6
education (curri support effectiv for effective p	or the in-depth stage: quality assessment of included studies - How can tea (culum and practicum) and the school curriculum and guidance materials e pedagogy? - Theory of change - Strength and nature of the body of evid pedagogical practices - Pedagogic theory and pedagogical approach des and beliefs and Pedagogic strategies.	best ence	C	03
UNIT – IV	PROFESSIONAL DEVELOPMENT			6
support - Suppo	velopment: alignment with classroom practices and follow up support - ort from the head teacher and the community - Curriculum and assessme ning: limited resources and large class sizes.		C	04
UNIT – V	RESEARCH GAPS AND FUTURE DIRECTIONS			6
Research design	n – Contexts – Pedagogy – Teacher education – Curriculum and assessme and research impact.	ent –		05
	Total Peri	ods:	3	80
Reference Bool	ks:		·	
2, Page: 245	. Hardman, 'Classroom interaction in Kenyan primary schools', Compare, 5-261, 2001. , 'Curricular reform in schools: The importance of evaluation', Journal of C			

- 3. K. Akyeampong, 'Teacher training in Ghana-does it count? Multi-site teacher education research project' (MUSTER) Country report 1, London, 2003.
- 4. K. Akyeampong, K. Lussier, J. Pryor and J. Westbrook, 'Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?' International Journal Educational Development, Vol. 33, No. 3, Page: 272–282, 2013.
- 5. R. J. Alexander 'Culture and pedagogy: International comparisons in primary education', Oxford and Boston: Blackwell, 2001.
- 6. M. Chavan, 'Read India: Amass scale, rapid, 'learning to read' campaign', 2003.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Outcomes (CO)

CO1	Students will be able to understand what pedagogical practices are being used by teachers in
	informal and informal classrooms in developing countries.
CO2	Students will be able to understand the evidence on the effectiveness of these pedagogical
	practices, in what conditions, and with what population of learners.
CO3	Students will be able to understand how can teacher education (curriculum and practicum)
	and the school curriculum and guidance materials best support effective pedagogy.
CO4	Students will be able to understand professional development, curriculum and assessment
CO5	Students will be able to understand the research design and its impact.

Course Outcomes					Prog	gram	Outco	omes					Program Specific Outcomes							
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3					
CO1	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1					
CO2	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1					
CO3	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1					
CO4	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1					
CO5	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1					

AD1004	STRESS MANAGEMENT BY YOGA	L	Т	P	С
		2	0	0	0
Objectives					
• To achieve of	verall health of body and mind				
• To overcome	stress				

UNIT -	- I																10
Definiti	ions of	Eigh	t parts	s of y	oga.(A	Ashta	nga)									(CO1
UNIT -	- II															T	10
Yam ar aparigra	•							,				theya	ı, braı	nhacha	arya an	^d	C O2
UNIT -	- III																10
Asan a Regulai														nd &	body	-	C O 3
														Tota	l Perio	ds:	30
Refere	nce Bo	oks:															
Course CO1					to de	evelop	heal	thy m	ind in	a he	althy	body	thus	impro	ving soo	cial h	ealtl
CO2	Stude also Impro	ents w	vill be	e able		•		•			•	•		•			ealth
CO1	Stude also Impro	ents w	vill be	e able		•		•			•	•		•	ving soo		ealth
CO1 CO2 CO3	Stude also Impro Stude	ents w	fficier	e able ncy e able	to un	dersta	and ef	ffects IES V	of reg VITH	gulariz	zation	of b	reathi	ng tecl UTCO Prog	hniques MES gram Sp	pecifi	
CO1 CO2	Stude also Impro Stude M	ents w ove ei ents w	vill be fficien vill be	e able ncy e able	to un	dersta OUT Prog	and ef	ffects IES V Outco	of reg VITH omes	gulariz	zation	of b	reathi	ng tecl UTCO Prog	hniques MES gram Sp Dutcom	pecifi	
CO1 CO2 CO3	Stude also Impro Stude M. urse omes	ents w	fficier	e able ncy e able	to un	dersta	and ef	ffects IES V	of reg VITH	gulariz	zation	of b	reathi	ng tecl UTCO Prog	hniques MES gram Sp	pecifi	

AD1005	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	L	Т	Р	C
		2	0	0	0

CO2

CO3

Objectives

- · To learn to achieve the highest goal happily
- · To become a person with stable mind, pleasing personality and determination
- \cdot To awaken wisdom in students

UNIT – I

Neetisatakam– holistic development of personality – Verses-19,20,21,22 (wisdom) – Verses-29,31,32 (pride & heroism) – Verses-26,28,63,65 (virtue) – Verses-52,53,59 (dont's) – Verses-71,73,75,78 (do's)

UNIT – II

Approach to day-to-day work and duties – Shrimad Bhagwad Geeta: Chapter 2– Verses 41, 47,48 – Chapter 3– Verses 13, 21, 27, 35 Chapter 6-Verses 5,13,1

UNIT – III

Statements of basic knowledge – Shrimad Bhagwad Geeta: Chapter2– Verses 56, 62, 68 Chapter 12 – Verses 13, 14, 15, 16,17, 18 – Personality of role model – Shrimad Bhagwad Geeta – Chapter2– Verses 17, Chapter 3– Verses 36,37,42 – Chapter 4– Verses 18, 38,39 Chapter18 – Verses 37,38,63

Total Periods: 30

10

10

10

Reference Books:

- 1. Gopinath, P. Rashtriya Sanskrit Sansthanam, 'Bhartrihari's Three Satakam', Niti-sringarvairagya, New Delhi,2010.
- 2. Swami Swarupananda, 'Srimad Bhagavad Gita', Advaita Ashram, Publication Department, Kolkata, 2016.

Course	e Outcomes (CO)
CO1	Students will be able to study the Shrimad-Bhagwad-Geeta that will help the student in developing his personality and achieve the highest goal in life
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity
CO3	Study of Neet is hatakam will help in developing versatile personality of students.

Course Outcomes					Prog	ram	Outco	omes					-	gram Sp Dutcom	
	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1

AD1006	UNNAT BHARAT ABHIYAN L	Т	Р	C
	2	0	0	0
Objectives				
To engage	e the students in understanding rural realities			
• To identi	fy and select existing innovative technologies, enable customization of te	echn	olog	ies
or devise	implementation method for innovative solutions, as per the local needs.			
To lever	rage the knowledge base of the institutions to devise processes for	or e	ffec	tiv
impleme	ntation of various government programmes			
• To under	stand causes for rural distress and poverty and explore solutions for the sar	me		
• To appl	y classroom knowledge of courses to field realities and thereby improve	e qu	ality	0
learning				
UNIT - I	QUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARA	ΔT		9
	ABHIYAN			
Introduction to U	Jnnat Bharat Abhiyan - concept, scope and objectives, rural life, rural soci	iety,		
cast and gender	relations, rural values with respect to community, nature and resour	rces,		
elaboration of "	Soul of India lies in villages" – (Gandhi Ji), Rural infrastructure, problem	ns in		
rural area.			C	'0
Assignment · Pr	epare a map (Physical, visual and digital) of the village you visited and w	vrite		
0	nter-family relation in that village.	viite		
an essay about n	ter failing feration in that village.			
UNIT - II	RURAL ECONOMY AND LIVELIHOOD			9
-	ning, land ownership pattern, water management, animal husbandry, non-	farm		
livelihoods and a	artisans, rural entrepreneurs, rural market.		C	O 2
Assignment: D	escribe your analysis of rural household economy, it's challenges and poss	sible	;	

	•
History of Rural Development, Traditional rural organizations, Self Help Groups, Gram Swaraj and 3- Tier Panchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Committee), local civil society, local administration. Introduction to Constitution, Constitutional Amendments in Panchayati Raj – Fundamental Rights and Directive Principles.	CO
JNIT - IV RURAL DEVELOPMENT PROGRAMMES	
Swatchh Bharat, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning, NRLM, MNREGA, etc. Written Assignment: Describe the benefits received and challenges faced in the delivery of one of these programmes in the rural community, give suggestions about improving	со
Assignment: Panchayati Raj institutions in villages? What would you suggest to improve their offectiveness? Present a case study (written or audio-visual). Field Visit – 4. JNIT - IV RURAL DEVELOPMENT PROGRAMMES Vational programmes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman Bharat, Swatchh Bharat, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning, NRLM, MNREGA, etc. Vritten Assignment: Describe the benefits received and challenges faced in the delivery of	
Interaction with SHG women members, and study of their functions and challenges; planning or their skill building and livelihood activities	

	ciate with Social audit exercises at the Gram Panchayat level, and interact with nme beneficiaries	
• Atter	d Parent Teacher Association meetings, and interview school drop outs	
• Visit	local Anganwadi Centre and observe the services being provided	
• Visit	local NGOs, civil society organisations and interact with their staff and beneficiaries.	
-	nize awareness programmes, health camps, Disability camps and cleanliness camps o et soil health test, drinking water analysis, energy use and fuel efficiency surveys	
• Raise prepare	understanding of people's impacts of climate change, building up community's disaster	
irrigati	nise orientation programmes for farmers regarding organic cultivation, rational use of on and fertilizers and promotion of traditional species of crops and plants • Formation unittees for common property resource management, village pond maintenance and	
	Total Periods:	45
2.	Singh, Katar, Rural Development Principles, Policies and Management, Sage Publicat New Delhi, 2015 A Hand book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchayati Studies, 2002 United Nations, Sustainable Development Goals, 2015 un.org/sdgs	
Refere	nce Books:	
1.	M.P.Boraian, Best Practices in Rural Development, Shanlax Publishers Unnat Bharat Abhiyan Website : www.unnatbharatabhiyan.gov.in	
	e Outcomes (CO)	
Course	Able to understand of rural life, culture and social realities	
Course CO1	The to understand of furth file, culture and social realities	
	Able to understand the concept of measurement by comparison or balance of parameters.	
CO1		
CO1 CO2	Able to understand the concept of measurement by comparison or balance of parameters.	

Course Outcomes					Pro	gram	Outo	comes					Program Specific Outcomes					
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3			
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
CO3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
CO4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
CO5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			

AD1007	ESSENCE OF INDIAN KNOWLEDGE TRADITION	L	Τ	P	C
		2	0	0	0
Objectives					
• Get a kno	owledge about Indian Culture				
Know Inc	dian Languages and Literature religion and philosophy and the fine a	arts in	Indi	ia	

- Explore the Science and Scientists of Ancient, Medieval and Modern India
- Understand education systems in India

UNIT - I	INTRODUCTION TO CULTURE	9
Culture, civiliza	tion, culture and heritage, general characteristics of culture, importance of	CO1
culture in humar	n literature, Indian Culture, Ancient India, Medieval India, Modern India.	COI

UNIT - II INDIAN LANGUAGES AND LITERATURE

Indian Languages and Literature – I: Languages and Literature of South India, – Indian Languages and Literature – II: Northern Indian Languages & Literature

UNIT - III RELIGION AND PHILOSOPHY

Major religions practiced in India and Understanding their Philosophy – religious movements in Modern India (Selected movements only)

UNIT - IV FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)

Indian Painting, Indian handicrafts, Music, divisions of Indian classic music, modern Indian	
music, Dance and Drama, Indian Architecture (ancient, medieval and modern), Science and	CO4
Technology in India, development of science in ancient, medieval and modern India.	

UNIT - V EDUCATION SYSTEM IN INDIA

Education in ancient, medieval and modern India, aims of education, subjects, languages, Science and Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of Modern India

Total Periods: 45

9

9

9

9

Reference Books:

- 1. Kapil Kapoor, "Text and Interpretation: The India Tradition", ISBN: 81246033375, 2005
- 2. "Science in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007
- 3. NCERT, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450 494-X, 200
- 4. Narain, "Examinations in ancient India", Arya Book Depot, 1993
- 5. Satya Prakash, "Founders of Sciences in Ancient India", Vijay Kumar Publisher, 1989
- 6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-8120810990, 2014

Course	e Outcomes (CO)
CO1	Understand philosophy of Indian culture
CO2	Distinguish the Indian languages and literature
CO3	Learn the philosophy of ancient, medieval and modern India
CO4	Acquire the information about the fine arts in India. Know the contribution of scientists of
	different eras
CO5	Understand education systems in India
	MADDING COUDSE OUTCOMES WITH DOOD AMME OUTCOMES

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

Course Outcomes					Pro	gram	Outo	comes					-	ram S Dutcon	pecific nes
Outcomes	a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

ŀ	٩D	1	0	<u>90</u>	3

SANGA TAMIL LITERATURE APPRECIATION

 L
 T
 P
 C

 2
 0
 0
 0

Objectives

- Introduction to Sanga Tamil Literature.
- 'Agathinai' and 'Purathinai' in SangaTamil Literature.
- 'Attruppadai' in SangaTamil Literature.
- 'Puranaanuru' in SangaTamil Literature.
- 'Pathitrupaththu' in SangaTamil Literature.

UNIT ·	I SANGA TAMIL LITERATURE AN INTRODUCTION	ļ
Introdu	ction to Tamil Sangam-History of Tamil Three Sangams-Introduction to Tamil	
Sangan	Literature–Special Branches in Tamil Sangam Literature- Tamil Sangam Literature's	CO
Gramm	ar Tamil Sangam Literature's parables.	
UNIT -	II AGATHINAI AND PURATHINAI	
Tholka	ppiyar's Meaningful Verses – Three literature materials – Agathinai's message - History	
	re from Agathinai – Purathinai – Classification – Mesage to Society from Purathinai.	CO
UNIT -	III ATTRUPPADAI	
Attrup	adai Literature – Attruppadai in'Puranaanuru' – Attruppadai in'Pathitrupaththu'-	CO
	adai in 'Paththupaattu'.	CO
	·	
UNIT -	IV PURANAANURU	
Purana	unuru on Good Administration, Ruler and Subjects-Emotion & its Effect in	CO
Purana	inuru.	CO
UNIT -	V PATHITRUPATHTHU	
Pathitru	paththuin'Ettuthogai'–Pathitrupaththu'sParables–Tamildynasty:Valor, Administration,	~~~
Charity		CO
Charity	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu.	CO
Charity	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu.	
•	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods:	45
Text B	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks:	
Text B 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018.	
Text B 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks:	
Text B 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018.	
Text B 1. 2.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018.	
Text B 1. 2. Refere	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018. Hank Heifetz and George L. Hart, The Purananuru, Penguin Books, 2002.	45
Text B 1. 2. Refere 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018. Hank Heifetz and George L. Hart, The Purananuru, Penguin Books, 2002. here Books:	45
Text B 1. 2. Refere 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Dece Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca	45 1
Text B 1. 2. Refere 1.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Marine Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin	45 1
Text B 1. 2. Refere 1. 2.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Marce Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015.	45 idem
Text B 1. 2. Refere 1. 2.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Methods in the Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical	45 idem
Text B 1. 2. Refere 1. 2.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Marce Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015.	45 idem
Text B 1. 2. Refere 1. 2.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Methods in the Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical	45 idem
Text B 1. 2. Refere 1. 2. 3.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. Methods in the Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical	45 idem
Text B 1. 2. Refere 1. 2. 3.	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002. MarkHeifetz andGeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, PrintUniversity Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical poetry,Asia Pub.House, 1967.	45 idem
Text B 1. 2. Refere 1. 2. 3. Course	in Pathitrupaththu - Mesaage to Society from Pathitrupaththu. Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018. Hank Heifetz and George L. Hart, The Purananuru, Penguin Books, 2002. Meta Books: Kamil Zvelebil, The Smile of Murugan: On Tamil Literature of South India, Brill Aca Pub, 1997. George L. Hart, Poetsof the Tamil Anthologies: Ancient Poemsof Love and War, Prin University Press, 2015. Xavier S. Thani Nayagam, Landscape and poetry: a study of nature in classical poetry, Asia Pub. House, 1967. Outcomes (CO)	45 idem
Text B 1. 2. Refere 1. 2. 3. Course CO1	Total Periods: Total Periods: Total Periods: Soks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. Hart, The Purananuru,Penguin Books,2002. Market Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical poetry,Asia Pub.House, 1967. Outcomes (CO) Appreciate and apply the messages in Sanga Tamil Literature in their life. Differentiate 'Agathinai' and 'Purathinai' in their personal and societalife.	45 idem
Text B 1. 2. Refere 1. 2. 3. Course CO1 CO2 CO3	Total Periods: Total Periods: Total Periods: Doks: Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018. Hank Heifetz and George L. Hart, The Purananuru, Penguin Books, 2002. Ince Books: Kamil Zvelebil, The Smile of Murugan: On Tamil Literature of South India, Brill Aca Pub, 1997. George L. Hart, Poetsof the Tamil Anthologies: Ancient Poemsof Love and War, Prin University Press, 2015. Xavier S. Thani Nayagam, Landscape and poetry: a study of nature in classical poetry, Asia Pub. House, 1967. Outcomes (CO) Appreciate and apply the messages in Sanga Tamil Literature in their life. Differentiate 'Agathinai' and 'Purathinai' in their personal and societalife. Appreciate and apply the messages in 'Attruppadai' in their personal and societalife.	45 idem
Text B 1. 2. Refere 1. 2. 3. Course CO1 CO2	Total Periods: Total Periods: Total Periods: Soks: Sivaraja Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018. Hart, The Purananuru,Penguin Books,2002. Market Books: Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Aca Pub,1997. GeorgeL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove andWar, Prin University Press,2015. XavierS.Thani Nayagam, Landscape and poetry:a study of nature in classical poetry,Asia Pub.House, 1967. Outcomes (CO) Appreciate and apply the messages in Sanga Tamil Literature in their life. Differentiate 'Agathinai' and 'Purathinai' in their personal and societalife.	45 idem nceto Tam

Program Outcomes											Program Specific Outcomes			
a	b	c	d	e	f	g	h	i	j	k	l	1	2	3
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a b c d e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a b c d e f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a b c d e f g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a b c d e f g h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a b c d e f g h i 1	a b c d e f g h i j 1	a b c d e f g h i j k 1	a b c d e f g h i j k l 1	Program Outcomes a b c d e f g h i j k l 1 1	Program Outcomes Outcomes a b c d e f g h i j k l 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1